Linear Relations: Solutions

This booklet belongs to:_____Period____

LESSON #	DATE	QUESTIONS FROM NOTES	Questions that I find difficult
		Pg.	
		Pg.	
		Pg.	
	1	Pg.	
	1	Pg.	
		Pg.	
	1	REVIEW	
		TEST	

Your teacher has important instructions for you to write down below.

Linear Relations

Linear Relations SPECIFIC OUTCOMES		ΤΟΡΙϹ	REVIEW EXAMPLE
C4. Describe and represent linear relations using:	4.2	Determine whether a situation represents a linear relation.	
• Words	4.3	Determine whether a graph represents a linear relation.	
 Ordered pairs Tables 	4.4	Determine whether a table of values or set of ordered pairs represents a linear relation.	
GraphsEquations	4.5	Draw a graph from a set of ordered pairs and determine if the relationship is linear.	
	4.6	Determine if an equation represents a linear relation.	
	4.7	Match corresponding representations of linear relations.	
C5. Determine the characteristics	5.1	Find the intercepts of the graph of a linear relation. State the intercepts as values or as ordered pairs.	
of graphs of linear relations,	5.2	Determine the slope of a graph.	
including the:Intercepts	5.4	Sketch different types of linear relations based on different information regarding intercepts.	
SlopeDomain	5.5	Match a graph to its slope and y-intercept.	
• Range	5.6	Identify the slope and y-intercept from a graph.	
	5.7	Solve problems that involve intercepts, slope, domain, or range of a linear relation.	

[C] Communication [PS] Problem Solving, [CN] Connections [R] Reasoning, [ME] Mental Mathematics [T] Technology, and Estimation, [V] Visualization

Term	Definition	Example
Linear Relation		
Linear Function		
Ordered pair		1 7 7 1 1
Slope		
y-intercept		
x-intercept		
Slope-intercept form		1
of a linear equation		
Point-slope form of		L
a linear equation		
General form of a		
linear equation		
Parallel Lines		
Perpendicular Lines		
Dependent Variable	1 1 1 1 1 1	1
Independent	1 1 1 1	1 T 1 1
Variable		
Linear Function		

Introduction to Linear Relations

We have examined relations between two quantities earlier in this course. Now we will narrow our focus to examine only linear relations.

Linear relations are straight line relationships. Each output value is proportionate to the input value. That is, the change occurs at a constant rate.

Eg. An employee that works for an hourly wage (\$10 per hour).

This is a linear relationship because the employees earnings increase at a constant rate. The equation that relates the **Earnings** and the **hours worked** is E = 10h.

1. Plot the relationship described above if the domain is {0,1,2,3,4,5,6,7}.

Page 4 |Linear Relations

5. Challenge #1:

If y = 3x, find the missing values of y.

	y = 3x		
x	У		
-2	-6		
-1	- 3		
0	0		
1	3		
2	b		

6. What <u>name</u> do we give the pairs of numbers in each row?

ordered pairs
7. Does (-8, -24) satisfy the equation above.
Yes.
$$3(-8) = -24$$

8. How many pairs of numbers are there that satisfy that equation?
infinite number
9. What shape do you see if you plot each of the pairs of numbers in the table above?
9. What shape do you see if you plot each of the pairs of numbers in the table above?
A straight line

Finding coordinates from an equation:

A **Table of Values** is a tool used to find ordered pairs from an equation.

**I chose to input values of *x*, but I could have selected values of *y* and solved for *x* (*although I find that more difficult in this case*).

Page 6 |Linear Relations

Dec.28

Some Algebra Review:

When working with a table of values and linear equations, it is most useful to have 'y' isolated on the left.

.....

Example:

$$2x + 3y = 12$$
$$3y = -2x + 12$$
$$y = -\frac{2}{3}x + 4$$

11. Isolate y.

$$\frac{2x - 4y = 16}{-2x - 2x}$$

$$\frac{-2x - 2x}{-4y = -2x + 1b}$$

$$\frac{-4y = -2x + 1b}{-4y = -2x + 1b}$$

$$y = \frac{1}{2}x - 4$$

$$y = \frac{1}{2}x - 4$$

$$\frac{4y - 8x + 12 = 0}{+8x} + \frac{6}{7}y$$

$$\frac{4y - 8x + 12 = 0}{-12}$$

$$\frac{4y - 8x + 12 = 0}{-12}$$

$$\frac{4y - 8x + 12 = 0}{-12}$$

$$\frac{13. Isolate y.}{5 - \frac{7}{5} - \frac{5}{5}}$$

$$\frac{20 + 3x = 5y}{5 - \frac{7}{5} - \frac{5}{5}}$$

$$\frac{20 + 3x = 5y}{5 - \frac{7}{5} - \frac{5}{5}}$$

$$\frac{14. Isolate y.}{\frac{1}{3}x - \frac{3}{2}y = 1}$$

$$\frac{4y - 8x - 12}{-4y - \frac{3}{4} + 9 = 0}$$

$$\frac{4y - 8x - 3}{-2x - \frac{3}{4} + 9 = 0}$$

$$\frac{4x - 12y + 3b = 6}{-3y = -4x - 3b}$$

$$\frac{4y - 8y = -3b}{-3y = -4x - 3b}$$

$$\frac{4y - 8y = -4x + 12}{-\frac{3}{5} - \frac{2}{3}}$$

$$\frac{16. Isolate y.}{30(\frac{2x}{3} + \frac{y}{2} - \frac{3}{5} = 1)}$$

$$\frac{60x}{3} + \frac{30y}{5} - \frac{90}{5} = 30$$

$$\frac{20x + 15y - 18 = 30}{20x + 15y = 448}$$

$$\frac{17}{5} = -20x + 48$$

$$\frac{3y = -\frac{20}{15}x + \frac{49}{15}$$

$$\frac{4y - 8x + 12}{-\frac{1}{5}}$$

Graphing from a Table of Values.

Using the *table of values*, graph the equation y = 3x on the graph provided.

Step1: From the table of values we get the following ordered pairs. (-2, -6), (-1, -3), (0,0), (1,3), (2,6)

Step2: Plot each of the ordered pairs.

Step3: Draw a line through the points with arrows on each end.

Use the table of values, **if necessary**, to graph each of the following equations.

Page 9 |Linear Relations

Graphing Equations: A review from above.

Using a Table of Values:

Step 1: Choose appropriate values of 'x' to put in the table.

Step 2: Input each 'x' into the equation to find the corresponding 'y'.

Step 3: Plot the new-found 'ordered pairs'.

Step 4: Draw a line through the points. (be careful of the shape...not all are lines)

.....

In this unit, we will be studying graphs of straight lines and their equations.

We call these LINEAR EQUATIONS.

An equation is said to be *linear* if it forms a straight line when graphed.

Graph the following equations, then determine if they are linear or not.

Page 11 |Linear Relations

36. Can you describe a "rule of thumb" that will enable you to tell if an equation represents a linear equation or not?

exponent on the 'x' is a 1 when equation is isolated in terms of y.

Challenge #3:

The equation 2x + 4y = 16 is a **linear equation**.

37. Find the coordinates of the point where the line crosses the y-axis. (Think...what would be the value of 'x' here?) $\begin{aligned}
\lambda(o) + 4y &= 1b \\
4y &= 1b \\
- &= 4
\end{aligned}$

38. What is the value of 'x' where the line crosses the y-axis?

39. Find the coordinates of the point where the line crosses the x-axis. $\sqrt{2}$

40. What is the value of "*y*" where the line crosses the x-axis?

Intercepts

The location where a line passes through the *x*-axis is called the *x*-intercept. This point will have the coordinates (x, 0)

The location where a line passes through the *y*-axis is called the **y-intercept**. This point will have the coordinates (0, y)

Consider: 2x + 4y = 16

This line has an x-intercept at (8, 0). And a y-intercept at (0, 4).

You may see this written as: x-intercept is 8 y-intercept is 4

Calculating intercepts from an equation:

The x-intercept will have coordinates (x, 0). This means we can substitute 0 in for y and solve to find the x-intercept. The y-intercept will have coordinates (0, y).

Eg. Find the x-intercept for	2x + 4y = 16	Find the y-intercept:	2x + 4y = 16
	2x + 4(0) = 16		2(0) + 4y = 16
	2x = 16		4y = 16
	x = 8		y = 4

Intercepts can be expressed as ordered pairs or simply as values. For the example above, the x-intercept is 8 or the x-intercept is (8,0).

Some notes here...

P a g e 13 |Linear Relations

Calculate the intercepts and graph each equation using them. Fractions can be estimated on the grid.

Page 14 |Linear Relations

Answer the following questions about intercepts and linear relations. For these questions the domain is all real numbers.

Slope of a Line

	61. Draw a line through the points you
Challenge #4:	piorrea.
60. Plot the following points:	
(-1, -5), (2, -4), (5, -3), (8, -2)	62. Choose three sections of the line you
	just plotted and find their slopes.
	Slope of section 1:
6 5	$m = \frac{1}{2} \frac{1}{2}$
	run s
	Slope of section 2:
	1 11 ÷ 3
	Slope of section 3:
	<i>m</i> = 3
7	63. What do you notice?
	all sections have
	same slope
Some notes here	

Slope of a Line

Recall from our discussion of line segments that slope can be calculated using: $m = \frac{y_2 - y_1}{x_2 - x_1}$ or $\frac{rise}{run}$ For a straight line, the slopes of all segments on the line are equal. That is, if you find the slope of any two parts of the line, they will be equal.

The equations discussed earlier in this booklet result in lines that continue in two directions. Working with slope allows us to extend the line if we need to.

Remember:

- Parallel lines have equal slopes.
- Perpendicular lines have slopes that are negative reciprocals.

Page 17 |Linear Relations

P a g e 18 |Linear Relations

76. Julanya's internet provider charges a flat fee for the first 8 hr of access per month, plus an hourly rate for additional access. One month, 15 hr of usage cost her \$25.88. The next month, 27 hr of access cost her \$49.76.

78. What word is synonymous with rate in this unit? <u>slope</u> is a measure of rate of change

79. Find the flat fee for the first 8 hours. (Where will you find this value on the graph?)

slope
formula
$$\begin{cases}
\eta = \frac{y_{z} - y_{i}}{x_{z} - x_{i}} \\
\frac{49.76 - y}{27} = 1.99 \\
\frac{49.76 - y}{19} = 1.99 \\
49.76 - y = 19(1.99) \\
49.76 - y = 37.81 \\
-y = -11.95 \\
y = 11.95
\end{cases}$$

$$\frac{Alternate Method: Work backwards from 15hrs to 8 hrs (5, 25.88) \\
15 hours subtract 7 hrs cost \\
25.88 - 1.99(7) \\
= 11.95 \\
5 hrs uscape \\
... the flat fee$$

Find the slope of the line passing through the points:

Tinu me siope of me nine puss	ing mi ough me	points	
80. (2,1) and (6,6)	81. (-5,2) and (4,2)		82. (-3,0) and (3,-4)
$M = \frac{b-1}{b-2} = \frac{5}{4}$	η = 2. 4-	-2 = 0 -5	$m = \frac{-4-0}{3-3} = \frac{-4}{5} = -\frac{2}{3}$
83. The slope of a line is -2. The line passes through (0,0) and (-3,y). Find the value of y. $-\frac{2}{1} = \frac{y-p}{-3-0}$ substitute $-\frac{2}{1} = \frac{y}{-3}$ cross - multiply 6 = y		84. A line ha through of x. ι.ς = 3(. 3)	as a slope of 1.5. It passes (-2,1) and (x,7). Find the value $\frac{3}{2} = \frac{7 - 1}{x - 2}$ $\frac{3}{2} = \frac{6}{x + 2}$ $\frac{3}{x + 6} = 12$ $\frac{3}{x - 2} = \frac{6}{x - 2}$
85. Challenge#5: St	85. Challenge#5: Show that (7, -1) is on the line $y = 2x - 15$		
Algebraically:		Graphically:	

$$y = 2x - 15$$

 $-1 = 2(7) - 15$ { substitute
 $(7, -1)$
 $-1 = 14 - 15$
 $-1 = -1$
equation satisfied
 $\therefore (7, -1)$ is on
the line.

The Equation of a Line

As you have seen, equations such as 2x + 3y = 12 or 3y = x + 9 or $y = \frac{5}{6}x - 4$ produce straight lines when graphed. They are **linear equations**.

Linear Equations may be written in several forms:

Slope-Intercept Formy = 3x + 2Point-Slope Formm(x - 3) = (y - 2)General Form3x - y + 2 = 0

Recall the *Equation of a Line Property*:

The coordinates of every point on the line will satisfy the equation of the line.

Eg.1. Show that (7, -1) is on the line y = 2x - 15

y = 2x - 15	If (7, -1) is on the line, it will satisfy the equation.
(-1) = 2(7) - 15	Substitue the ordered pair into the equation.
-1 = 14 - 15	Does the left side = right side?
-1 = -1	Yes. The point IS on the line.

Page 21 |Linear Relations

.

92. Determine if the point $(2, -3)$ is on the line $y = 3x - 9$. -3 = 3(2) - 9	Explain why or why not: Yes, it is on the line because when the coordinates 2,-3 are substituted
-3=6-9	ínto the equation, left side and right
-3=-3	síde are equal.
93. Determine if the point $(-1, -4)$ is on the line $3x - 2y - 11 = 0$. 3(-1) - 2(-4) - 11 = 0 -3 + 8 - 11 = 0 $-6 = 0 \ False$	Explain why or why not: No., (-1,-4) does not satisfy the equation.
94. Determine if the point $(2, -3)$ is on the line $y + 1 = \frac{3x}{2}$.	Explain why or why not:
$-3 + 1 = \frac{3(2)}{2}$	(2,-3) does not satisfy the
$-2 = \frac{b}{2}$ -2 = 3 (Nb)	equation
95. Determine if the set of ordered pairs represents a linear relation. (2,3), (3,4), (4,5), (5,6) (2,3), (3,4), (4,5), (5,6)	Explain why or why not: YES, rate of change (slope) is constant. Graphing would show this clearly.
96. Determine if the set of ordered pairs represents a linear relation. (1,1), (1,2), (1,3), (1,4)	Explain why or why not: YES, it is a vertical line
97. Determine if the set of ordered pairs represents a linear relation.	Explain why or why not:
(2,1), (3,0), (4, -1), (5, -2)	YES, constant rate of change
X-coordinates : +1 constant y-coord :-1 constant	

Equation of a Line: Slope-Intercept Form

Remember, x and y are the coordinates of ANY point on the line. When substituted, they will satisfy the equation. See your work on the previous page!

Graph the equations below by finding the slope and y-intercept from the equation.

Page 26 |Linear Relations

Tenewing penne: men wine t	ne equanen in siepe inter cept i	
129. <i>R</i> (2,1)	130. <i>K</i> (-1,4)	131. <i>A</i> (3, -2)
у=зх+6	y=3x + b	y = 3x + b
1=3(2)+0	4 = 3(-1) + 5	-2 = 3(3) + B
1=6+6	4 = -3 + 6	-2 = 9 + 8
-5=6	7 = b	-11 = B
Therefore: y=3x-5	:- $y = 3x + 7$:- y = 3x −11
y = 3x + 6 y = 3(2) + 6 1 = 3(2) + 6 1 = 6 + 3 -5 = 6 $\therefore y = 3x - 5$	$\begin{array}{rcl} 133. T\left(-2, \frac{1}{2}\right) & & y = 3 \times + 0 \\ \frac{1}{2} = 3(-2) + 0 & \\ \frac{1}{2} = -6 + 0 & \\ \frac{1}{2} = -6 + 0 & \\ \frac{1}{2} = -6 & + 1 & \\$	$\begin{array}{rcl} 134. L\left(\frac{2}{3}, 1\right) & & \\ y & = & 3x + & 5 \\ & & (& = & 3\left(\frac{2}{3}\right) + 5 \\ & & 1 & = & \frac{16}{3} + 5 \\ & & 1 & = & 2 + & 5 \\ & & & -1 & = & 5 \\ & & & -1 & = & 5 \\ & & & & \vdots & y & = & 3x - 1 \end{array}$

Determine the value of b for the equation y = 3x + b if the line passes through the following points. Then write the equation in slope-intercept form.

Determine the value of m for the equation y = mx + 2 if the line passes through the following points. Then write the equation in slope-intercept form.

135. <i>R</i> (12,5)	136. <i>K</i> (1, -3)	137. <i>A</i> (-5,1)
y = mx + 2	y = mx + 2	y = mx ≠ 2
5 = m(12) + 2	-3 = m(1) + 2	(= m(-5) +2
3 = 12m	-5 = m	-1 = -5m
j m	: u = -(x +)	L = m
$\therefore y = \frac{1}{4}x + 2$	d sx z	$y = \pm m + 2$
v		· J S

What you just did above is one way that you will be able to find the equation of a line. IF you have the \underline{s}_{ppl} or the $\underline{y}_{int} araphi contact and input the <math>\underline{c}_{obr} din als}$ of a point on the line to solve for the unknown part of the equation.

Then you will write the full equation with \underline{slope} and $\underline{y} - \underline{intercept}$ in place of *m* and *b*.

The following is another method.

Page 27 |Linear Relations

The Equation of a Line

The	three	forms
-----	-------	-------

Slope-Intercept Form	Point-Slope Form	General Form
y = mx + b	$y - y_1 = m(x - x_1)$	Ax + By + C = 0
m is the slope b is the y-intercept	Derived from $m = \frac{y_1 - y_1}{x_2 - x_1}$ Cross multiply to get point- slope form. Need one point and slope	A must be positive. A,B,C are integers.

Write in general form.

138. $y = 3x - 5$ 3x - y - 5 = 0	139. y - 5 = x + 7 $x - y + 12 = 0$	140.5 - 2x = -4y + 2 $2x - 4y - 3 = 0$
$3 + 141 \left(-\frac{1}{3}x - 4y = 2 \right) - x - 12y = 6 + 12y + 6 = 0$	$3 + 3 + 5 = \frac{2}{3}x + 7$ 3y - 15 = 2x + 21 2x - 3y + 3b = 0	$12 \\ 143 (5 = \frac{2}{3}y + \frac{3}{4}x) \\ 60 = 8y + 9x \\ 9x + 8y - 60 = 0$

144. Challenge #6

Write the equation of the line that passes through A(2,5) and has slope 3. Express your answer in general from and in slope intercept form.

Page 28 |Linear Relations

Copyright Mathbeacon.com. Use with permission. Do not use after June 2011.

The Equation of a Line

IMPORTANT!!! There is only one line that passes through a given point with a given slope.

Given the slope and a point:

Eg.1. A line passes through A(2,5) and has slope 3. Write the equation of the line.

Use the slope formula :

$m=\frac{y_2-y_1}{x_2-x_1}$	Cross-Multiply. This creates the <u>Point-Slope form</u> of an equation.
$m(x_2-x_1)=y_2-y_1$	Fill in what you know. m = 3. Substitute the given point in for x_1 and y_1 .
3(x-2) = (y-5)	This is our equation in point-slope form . We no longer need the subscripts on x and y
3x - 6 = y - 5	Expanded.
3x - y - 1 = 0	Collecting the terms to the left side is called writing the equation in
Or	general form.
y = 3x - 1	Isolate for 'y' to get the equation in slope-intercept form .

Write the equation of the line that passes through the given point and has the given slope. Express the equation in a) point-slope form b) general form c) slope-intercept form.

145. (-2,3), -2	146. (-5,2),2	147. (-5,-1),-2
у-з=-2(х2)	y-2 = 2(x5)	y - 1 = -2(x - 5)
y-3 = -2(x+2) point-slope	a) y-2= 2(x+5)	a) y+1 = -2(x+5)
y-3=-2x-4	y-2 = 2× +10	y+1 = -2x - 10
y=-2x-1 slope-intercept	$b) y = \lambda x + 12$	b) y = -2x-11
2x+y+1=0 general	c) $2x - y + 12 = 0$	c) 2x + y +11 = 0
(x + 2) = O(x + 2)		
b) $2x + y + 1 = 0$	а) b)	b)
c) y=-2x-1	c)	c)
148. (-3,4), $-\frac{1}{3}$	149. (2,4), ¹ / ₂	150. (0,7), -1
$y - 4 = -\frac{1}{3}(x3)$	$a)y-4 = \frac{1}{2}(x-2)$	a)y-7 = -i(x-0)
a) $y - 4 = -\frac{1}{3}(x + 3)$	$y - 4 = \frac{1}{2}x - 1$	y-7 = -x
y-4 = -3x-1	$b)y = \frac{1}{2}x + 3$	5) $y = -x + 7$
b) y = - ¹ 3 x + 3	2y = x + 6	c) x + y -7 =0
3y = -x +9	c) x - 2y + 6 = 0	
c) x + 3y - 9 = 0	_	
a)	a)	a)
b)	ь)	b)
c)	c)	c)

Write the equation of the line that passes through the given point and has the given slope. Express the equation in a) point-slope form b) slope-intercept form c) general form.

151. $(3, -6), \overline{m} = -3$	152. (4,6), $m = 5$	153. $(-2, -1), m = \frac{1}{2}$
Start with Point-Slope	a)4-b = 5/x-4)	
tormula:		a) y + 1 = ź (x+2)
	y-6 = 5x - 20	4+1 = +4 +1
$y_2 - y_1 = m(x_2 - x_1)$		4 · · >× · · /
у6 = -з(х-з)	6) 7 - 2x - 17	b) y = ±x
у + 6 = -з(х-з)		
y + 6 = -3x + 9	c) 5x - y - 14 = 0	Ly - X
y = -3x + 3		c) $x - 2y = 0$
$3x + \mu - 3 = 0$		<i>, , , , , , , , , ,</i>
a) $y + 6 = -3(x-3)$	a)	a)
b) и=-зх+з	b)	b)
() = ()	c	c)
CJ S A + Y - S = C		
4 = 4 ($4 \operatorname{rr} \left(\begin{pmatrix} 1 \\ - \end{matrix} \right) \qquad 4$	156(-21)m = 15 3
154. $(5, -6), m = -\frac{1}{4}$	155. $\left(\frac{1}{2}, 6\right), m = \frac{1}{3}$	$\frac{100}{2}$
$\begin{array}{l} 154. (5, -6), m = -\frac{3}{4} \\ n \end{array} \\ \begin{array}{l} y + b < -\frac{3}{4} \left(x - 5 \right) \end{array} \end{array}$	$a) Y - 6 = \frac{4}{3} \left(x - \frac{1}{2} \right)$	$a_{1}y - 1 = \frac{3}{2}(x+2)$
$y + b = -\frac{3}{4}(x - 5)$ $y + b = -\frac{3}{4}(x - 5)$ $y + b = -\frac{3}{4}x + \frac{15}{4}$	$\begin{array}{rcl} & 155. \left(\frac{1}{2}, 6\right), m = \frac{1}{3} \\ & a \end{array} \\ \begin{array}{rcl} & y - 6 & = & \frac{4}{3} \left(x - \frac{1}{2} \right) \\ & y - 6 & = & \frac{4}{3} x - \frac{4}{6} + \frac{6}{7} \end{array} \end{array}$	$y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}x + 3$
$\begin{array}{rcl} x^{154.} & (5,-6), & m & = -\frac{1}{4} \\ x^{2} & y^{2} + b & = -\frac{3}{4} \left(x - 5 \right) \\ y^{2} + b & = -\frac{3}{4} x + \frac{15}{4} \\ y^{2} + \frac{14}{4} & = -\frac{3}{4} x + \frac{15}{4} \\ y^{2} + \frac{14}{4} & = -\frac{3}{4} x + \frac{15}{4} \\ \end{array}$	$\begin{array}{rcl} 155.\left(\frac{1}{2},6\right), m = \frac{1}{3}\\ a \end{pmatrix} \mathcal{Y} - 6 &= \frac{4}{3}\left(\mathbf{X} - \frac{1}{2}\right)\\ \mathcal{Y} - 6 &= \frac{4}{3}\mathbf{X} - \frac{4}{6} + \frac{6}{7}\\ \mathcal{Y} &= \frac{4}{3}\mathbf{X} - \frac{4}{5} + \frac{18}{7}\\ \mathcal{Y} &= \frac{4}{3}\mathbf{X} - \frac{4}{5} + \frac{18}{7}\end{array}$	$y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}x + 3$ $y = \frac{3}{2}x + 4$
$\begin{array}{rcl} & 154. (5, -6), m = -\frac{3}{4} \\ & \chi + 6 = -\frac{3}{4} \left(\chi - 5 \right) \\ & \chi + 6 = -\frac{3}{4} \chi + \frac{15}{4} \\ & \chi + \frac{14}{4} = -\frac{3}{4} \chi + \frac{15}{4} - \frac{24}{4} \\ & \chi + \frac{15}{4} - \frac{15}{4} - \frac{24}{4} \\ & \chi + \frac{15}{4} - \frac{15}{4$	$\begin{array}{rcl} 155.\left(\frac{1}{2},6\right), m = \frac{1}{3} \\ a \\ y - 6 &= \frac{4}{3}\left(x - \frac{1}{2}\right) \\ y - 6 &= \frac{4}{3}x - \frac{4}{6} + \frac{6}{7} \\ y &= \frac{4}{3}x - \frac{5}{3} + \frac{18}{3} \\ y &= \frac{4}{3}x - \frac{5}{3} + \frac{18}{3} \\ y &= \frac{4}{3}x - \frac{5}{3} + \frac{18}{3} \end{array}$	$y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}x + 3$ $y = \frac{3}{2}x + 4$ 2y = 3x + 8
$ \begin{array}{rcl} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & $	$ \begin{array}{rcl} 155.\left(\frac{1}{2},6\right), m = \frac{1}{3} \\ a \\ y - 6 &= \frac{4}{3}\left(x - \frac{1}{2}\right) \\ y - 6 &= \frac{4}{3}x - \frac{4}{6} + \frac{6}{7} \\ y &= \frac{4}{3}x - \frac{2}{3} + \frac{18}{3} \\ y &= \frac{4}{3}x + \frac{16}{3} \\ b \\ y &= \frac{4}{3}x + \frac{16}{3} \end{array} $	$y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}x + 3$ $y = \frac{3}{2}x + 4$ $2y = 3x + 8$ $y = -3x + 8 = 0$
$ \begin{array}{rcl} & 154. \ (5, -6), m &= -\frac{1}{4} \\ n & y + b &= -\frac{3}{4} \left(x - 5 \right) \\ & y + b &= -\frac{3}{4} x + \frac{15}{4} \\ & y + \frac{14}{4} &= -\frac{3}{4} x + \frac{15}{4} \\ & y + \frac{14}{4} &= -\frac{3}{4} x + \frac{15}{4} - \frac{24}{4} \\ & 5 & y &= -\frac{3}{4} x - \frac{9}{4} \\ & 4y &= -3x - 9 \end{array} $	$\begin{array}{rcl} 155.\left(\frac{1}{2},6\right), m = \frac{1}{3}\\ (x - \frac{1}{2})\\ y - 6 &= \frac{4}{3}\left(x - \frac{1}{2}\right)\\ y - 6 &= \frac{4}{3}x - \frac{4}{6} + \frac{6}{7}\\ y &= \frac{4}{3}x - \frac{1}{3} + \frac{18}{3}\\ 5 &= \frac{4}{3}x + \frac{16}{3}\\ 3y &= 4x + 16\end{array}$	$y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}x + 3$ $y = \frac{3}{2}x + 4$ $2y = 3x + 8$ $y = -0$
$ \begin{array}{rcl} & 154. \ (5, -6), \ m &= -\frac{3}{4} \\ n & \begin{array}{c} y + b &= -\frac{3}{4} \left(x - 5 \right) \\ y + b &= -\frac{3}{4} x + \frac{15}{4} \\ y + \frac{14}{4} &= -\frac{3}{4} x + \frac{15}{4} \\ y &= -\frac{3}{4} x - \frac{9}{4} \\ \end{array} $ $ \begin{array}{rcl} & 5 \\ y &= -\frac{3}{4} x - \frac{9}{4} \\ y &= -3x - 9 \\ \end{array} $ $ \begin{array}{rcl} & c \\ & 3x + 4y + 9 &= 0 \end{array} $	$\begin{array}{rcl} 155.\left(\frac{1}{2},6\right), m = \frac{1}{3}\\ a)y-6 &= \frac{4}{3}\left(x-\frac{1}{2}\right)\\ y-6 &= \frac{4}{3}x-\frac{4}{6}+\frac{6}{7}\\ y &= \frac{4}{3}x-\frac{2}{3}+\frac{18}{5}\\ 5)y &= \frac{4}{3}x+\frac{16}{3}\\ 3y &= 4x+16\\ c)4x-3y+16 &= 0\end{array}$	$x_{2}(x_{2}) = \frac{3}{2}(x_{2}+2)$ $y_{-1} = \frac{3}{2}(x_{2}+2)$ $y_{-1} = \frac{3}{2}x_{2}+3$ $y_{2} = \frac{3}{2}x_{2}+4$ $2y_{2} = 3x_{2}+8$ $y_{2} = 3x_{2}+8 = 0$
$ \begin{array}{rcl} & 154. \ (5,-6), m &= -\frac{1}{4} \\ n & y + b &= -\frac{3}{4} \left(x - 5 \right) \\ & y + b &= -\frac{3}{4} x + \frac{15}{4} \\ & y + \frac{14}{4} &= -\frac{3}{4} x + \frac{15}{4} - \frac{24}{4} \\ & y + \frac{14}{4} &= -\frac{3}{4} x - \frac{9}{4} \\ & 4y &= -3x - 9 \\ & 4y &= -3x - 9 \\ c & 3x + 4y + 9 &= 0 \\ \hline a & \end{array} $	$\begin{array}{rcl} 155.\left(\frac{1}{2},6\right), m = \frac{1}{3}\\ a \end{array} & \begin{array}{c} y - 6 & = & \frac{4}{3}\left(x - \frac{1}{2}\right)\\ y - 6 & = & \frac{4}{3}x - \frac{4}{6} + \frac{6}{7}\\ y & = & \frac{4}{3}x - \frac{2}{3} + \frac{18}{3}\\ 5 \end{array} & \begin{array}{c} y & = & \frac{4}{3}x + \frac{16}{3}\\ 3y & = & 4x + 16\\ c \end{array} & \begin{array}{c} 4x - 3y + 16 & = & 0\\ \end{array}$	a) $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}x + 3$ b) $y = \frac{3}{2}x + 4$ 2y = 3x + 8 c) $3x - 2y + 8 = 0$ a)
$\begin{array}{rcl} 154. (5, -6), m &= -\frac{1}{4} \\ n) & y + b &= -\frac{3}{4} \left(x - 5 \right) \\ y + b &= -\frac{3}{4} x + \frac{15}{4} \\ y + \frac{14}{4} &= -\frac{3}{4} x + \frac{15}{4} - \frac{24}{4} \\ b) & y &= -\frac{3}{4} x - \frac{9}{4} \\ 4y &= -3x - 9 \\ c) & 3x + 4y + 9 &= 0 \\ \hline a) \\ b) \end{array}$	$\begin{array}{rcl} 155.\left(\frac{1}{2},6\right), m = \frac{1}{3}\\ a \end{array} & \begin{array}{c} y - 6 & = & \frac{4}{3}\left(x - \frac{1}{2}\right)\\ y - 6 & = & \frac{4}{3}x - \frac{4}{6} + \frac{6}{7}\\ y & = & \frac{4}{3}x - \frac{1}{3} + \frac{18}{3}\\ 5 \end{array} & \begin{array}{c} y & = & \frac{4}{3}x + \frac{16}{3}\\ 3y & = & 4x + 16\\ c \end{array} & \begin{array}{c} y & = & 4x + 16\\ c \end{array} & \begin{array}{c} y & = & 16\\ 4x - 3y + 16 & = & 0\\ \end{array}$	a) $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}x + 3$ b) $y = \frac{3}{2}x + 4$ 2y = 3x + 8 c) $3x - 2y + 8 = 0$ a) b)
$\begin{array}{rcl} 154. (5, -6), m &= -\frac{1}{4} \\ n) & y + b &= -\frac{3}{4} \left(x - 5 \right) \\ y + b &= -\frac{3}{4} x + \frac{15}{4} \\ y + \frac{14}{4} &= -\frac{3}{4} x + \frac{15}{4} - \frac{24}{4} \\ b) & y &= -\frac{3}{4} x - \frac{9}{4} \\ 4y &= -3x - 9 \\ c) & 3x + 4y + 9 &= 0 \\ \hline a) \\ \hline b) \\ c) \\ \end{array}$	$\begin{array}{rcl} 155.\left(\frac{1}{2},6\right), m = \frac{1}{3}\\ a \end{array} & \begin{array}{c} y - 6 & = & \frac{4}{3}\left(x - \frac{1}{2}\right)\\ y - 6 & = & \frac{4}{3}x - \frac{4}{6} + \frac{6}{7}\\ y & = & \frac{4}{3}x - \frac{4}{3} + \frac{18}{3}\\ \end{array} \\ \begin{array}{c} 5 \end{array} & \begin{array}{c} y & = & \frac{4}{3}x - \frac{4}{3} + \frac{18}{3}\\ \end{array} \\ \begin{array}{c} 5 \end{array} & \begin{array}{c} y & = & \frac{4}{3}x + \frac{16}{3}\\ \end{array} \\ \begin{array}{c} 3y & = & 4x + 16\\ \end{array} \\ \begin{array}{c} c \end{array} \\ \begin{array}{c} a \end{array} \\ \begin{array}{c} b \end{array} \\ \end{array} \\ \begin{array}{c} c \end{array} \end{array}$	a) $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}(x+2)$ $y - 1 = \frac{3}{2}x + 3$ b) $y = \frac{3}{2}x + 4$ 2y = 3x + 8 c) $3x - 2y + 8 = 0$ a) b) c)

157. Challenge #7:

Write the equation of a line in general form given that the line passes through (3,4) and (4,6).

$$m = \frac{6-4}{4-3} = \frac{2}{1} \| y - 4 = 2(x - 3)$$

$$y - 4 = 2(x - 3)$$

$$y - 4 = 2x - 6$$

$$(2x - y - 2) = 0$$

P a g e **31** |Linear Relations

Dec.28

<u>Given two points:</u>

When given two points we must first find the slope of the line. Then we will follow the same process as above.

Write the equation of the line that passes through (3,4) and (4,6).

$m = \frac{y_2 - y_1}{x_2 - x_1}$	Find the slope.
$m = \frac{6-4}{4-3} = \frac{2}{1} = 2$	The slope is 2.
$2 = \frac{y-4}{x-3}$	Substitute slope and ONE of the points.
2(x-3) = y - 4	Cross-multiply. Point-slope form
2x - 6 = y - 4	Expand and simplify.
2x - y - 2 = 0	Write in general form.
y = 2x - 2	And in slope-intercept form if necessary.

Write the equation of the line that passes through the following two points in general form.

Explain your reasoning 158. (3,4) and (4,6) First find slope. Then use the Answered above . slope and ONE of the given points with the point-slope formula the Write equation. _____

159. (-2, -4) and (0, 6) Explain your reasoning First find slope. Then use the slope and <u>ONE</u> of the given points with the point-slope formular to write the equation. $m = \frac{6 - -4}{0 - -2} = \frac{10}{2} = 5$ y-6 = 5(x-0)y-6 = 5xy = 5x-65x - y - 6 = 0...... -----

Write the equation of the line that passes through the following two points in general form.

160. (-5, -8) and (-7, -9)	161. (-1, -2) and (3,0)	162. (0,4) and (5, 0)
$\frac{-98}{-7-5} = \frac{-1}{-2} = \frac{1}{2}$	$\frac{0-2}{3-1} = \frac{2}{4} = \frac{1}{2}$	$\frac{0-4}{5-0} = -\frac{4}{5}$
$y + 8 = \frac{1}{2}(x + 5)$	$y - 0 = \frac{1}{2}(x - 3)$	$y = 0 = -\frac{4}{5}(x - 5)$
$y + 8 = \frac{1}{2}x + \frac{1}{2}$	y = _2x2	$y = -\frac{4}{6}x + \frac{20}{5}$
2y + 16 = x + 5	2y = X - 3	$4 = -\frac{4}{2}x + 4$
x-2 اا-ر x-2 = 0	x - 2y - 3 = 0	5y = -4x + 20
		4x+5y-20 = 0
162 (8 -7) and (-6 -7)	$(4 \begin{pmatrix} 2 & 1 \end{pmatrix} \dots + \begin{pmatrix} 1 & 1 \end{pmatrix}$	145(03,04) and $(05,07)$
-7 -7 -7	164. $(\frac{1}{3}, \frac{1}{4})$ and $(\frac{1}{3}, \frac{1}{3})$	$0.7 - 0.4$ 0.3 $\frac{4}{7}$
$\frac{7}{-6} - \frac{7}{8} = \frac{6}{-14} = 0$	$m = \frac{1}{1} \frac{1}{2} $	$\frac{1}{0.5 - 0.3} = \frac{1}{0.2} = \frac{1}{2}$
y+7 = o(x+6)	$3^{-}3^{-}3^{-}3^{-}3^{-}3^{-}3^{-}3^{-}$	$y = 0.4 = \frac{3}{2}(x = 0.3)$
y+7 = 0	$\mathcal{M}^{=\frac{1}{12}\times\frac{-3}{7}=\frac{-3}{72}=\frac{-1}{72}$	$y - \frac{4}{15} = \frac{3}{2}(x - \frac{3}{15})$
	$y - \frac{1}{3} = -\frac{1}{4}(x - \frac{1}{3})$	$y - \frac{4}{10} = \frac{3}{2}x - \frac{9}{20}$
I	$(y - \frac{1}{3} = -\frac{1}{4} \times +\frac{1}{12})$	20y-8 = 30x-9
	12y-4 = -3x +1	30x-20y-1=0
	3x + 12y - 5 = 0	

Working With Linear Equations:

- Be able to convert equations between general form and slope-intercept form.
- Be able to graph equations given to you in either form.
- Be able to make comparisons based on parallel and perpendicular lines.

Eg.1. Graph the line 3x + 2y - 6 = 0.

Your Options:

1) use intercepts

2)make a table of values

3) convert to slope-intercept form

I chose **option 1** because this equation allows for easy calculations to find both intercepts.

My second choice would have been option 3, conversion to slope-intercept form. 3x + 2y - 6 = 0 2y = -3x + 6 $y = \frac{-3}{2}x + 3$

Plot the y-intercept then use the slope to plot another point, draw a line through the two points.

Graph the lines represented by each of the following equations. Use any method.

Page 34 |Linear Relations

Graph the lines represented by each of the following equations. Use any method.

Page 35 |Linear Relations

Find the slope and y-intercept, write the equation in slope-intercept form, then in general form.

Parallel and Perpendicular Lines

Recall:

- Parallel lines have equal slopes.
- Perpendicular lines have slopes that are negative reciprocals.

For each line below, state the slope of a line that would be (a) parallel (b) perpendicular.

Eg.1. Write the equation of the line parallel to 5x - 8y + 12 = 0 and through the point (-2,3).

Parallel means same slope. So we need to find slope of 5x - 8y + 12 = 0.

5x - 8y + 12 = 0	Convert to slope intercept form.
$y = \frac{5}{8}x + \frac{12}{8}$	This gives us the slope. $m = \frac{5}{8}$
	Use the slope, $m = \frac{5}{8}$ and the point (-2,3) to write the equation.
$m=\frac{y_2-y_1}{x_2-x_1}$	Fill in what you know. $m = \frac{5}{8}$. Substitute point (-2,3)
$\frac{5}{8} = \frac{y-3}{x2}$	Cross-Multiply.
5(x + 2) = 8(y - 3) 5x + 10 = 8y - 24	Simplify.
5x - 8y + 34 = 0	General Form
$y = \frac{5}{8}x + \frac{17}{4}$	Slope-Intercept Form

192. Write the equation of the line parallel to 4x - 6y + 12 = 0 and through the point (5,7).

Find:
$$4x - 6y + 12 = 0$$

 $-6y = -4x - 12$
 $y = \frac{-4}{-6}x + 2$ $M = \frac{2}{3}$
 $\frac{y = \frac{2}{3}x + 2}{\frac{2}{3} = \frac{y - 4}{x - 5}}$
 $3(y - 4) = 2(x - 5)$
 $3y - 21 = 2x - 10$
 $2x - 3y + 11 = 0$
 $y = \frac{2}{3}x + \frac{11}{3}$
Explain your reasoning
 $1f$ written in $Bx + By + L = 0$
 $Slope$ will be $-\frac{A}{-B} \cdot Parallel$
 $Means same slope.$
 I will use slope formula, then
 $Cross multiphy and simplify.$

Eg.2. Write the equation of the line perpendicular to 3x + 2y - 4 = 0 and through the point (2,3).

Perpendicular means slopes are negative reciprocals. **Step 1:** Find the slope of 3x + 2y - 4 = 0.

3x + 2y - 4 = 0 Convert to slope-intercept form.

2y = -3x + 4

 $y = \frac{-3}{2}x - \frac{4}{2}$ This line has a slope, $m = \frac{-3}{2}$. Negative reciprocal! The perpendicular line will have a slope of $m = \frac{2}{3}$

Use:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

 $\frac{2}{3} = \frac{y - 3}{x - 2}$ Fill in what you know. $m = \frac{2}{3}$. Substitute point (2,3)
 $2(x - 2) = 3(y - 3)$ Cross-Multiply.
 $2x - 4 = 3y - 9$ Simplify.
 $2x - 3y + 5 = 0$ General Form
 $y = \frac{2}{3}x + \frac{5}{3}$ Slope-Intercept Form

193. Write the equation of the line perpendicular to 4x + 3y - 24 = 0 and through the point (1,4).

$$\frac{3}{4} = \frac{y-4}{x-1}$$

$$3(x-1) = 4(y-4)$$

$$3x-3 = 4y-16$$

$$3x - 4y + 13 = 0$$

or

$$y = \frac{3}{4}x + \frac{13}{4}$$

Eg.3.Write an equation for the line through C(2,4) that is perpendicular to the line through A(1,2) and B(4,8).

First find slope AB. $m = \frac{8-2}{4-1} = \frac{6}{3} = 2$ Therefore, the perpendicular line has slope, $m = \frac{-1}{2}$. $m = \frac{y_2 - y_1}{x_2 - x_1}$ Fill in what you know: $m = \frac{-1}{2}$. & substitute point (2,4) $\frac{-1}{2} = \frac{y-4}{x-2}$ Cross-Multiply. -1(x-2) = 2(y-4)Simplify. Know which of these forms you are being asked to -x + 2 = 2y - 8answer in. If it is not specified, you can choose. x + 2y - 10 = 0General Form Both describe the same line. $y = -\frac{1}{2}x + 5$ Slope-Intercept Form

194. Write an equation for the line through C(1,2) that is perpendicular to the line through A(2,4) and B(5,5).

$M = \frac{5-4}{5-2} = \frac{1}{3}$	Explain your reasoning
$M_{1} = -\frac{3}{7}$	
$-\frac{3}{1} = \frac{y-2}{x-1}$	
-3(x-1) =1(y-2)	,
-3x+3 = y-2	
$y = -3 \times +5$	
3x +y -5 =0	

195. Write an equation for the line through Q(1,2) that is perpendicular to the line through R(-2,0) and S(3,5).

$$M = \frac{5-0}{3-2} = \frac{5}{5} = 1$$

$$M_{\rm h} = -1$$

$$I \text{ will use point-slope form this time.}$$

$$y-2 = -1(x-1)$$

$$y-2 = -x+1$$

$$y = -x+3 \text{ or } x+y-3 = 0$$

Determine the equation of the following lines. Answer in general form.

196. The line parallel to $2x - 3y + 1 = 0$ and passing through the point (1, 2). $m = -\frac{4}{3} = -\frac{2}{-3} = \frac{2}{3}$ $\frac{2}{3} = \frac{y - 2}{x - 1}$ $2(x - 1) = 3(y - 2)$ $2x - 2 = 3y - 6$ $2x - 3y + 4 = 6$	197. The line perpendicular to $x - 5y + 2 = 0$ and passing through the point (-2, 5). $M = -\frac{A}{B}$ $M = -\frac{5}{1} = -\frac{5}{1} = -\frac{1}{5} = \frac{1}{5}$ $-\frac{5}{1} = \frac{y-5}{x-2}$ -5(x+2) = 1(y-5) -5x - 10 = y-5 5x + y + 5 = 0
198. The line perpendicular to 3x - 12y + 16 = 0 and having the same y-intercept as $14x - 13y - 52 = 0$. $M = -\frac{A}{B} = -\frac{3}{-12} = \frac{1}{4} y - int = -\frac{C}{B} = -\frac{52}{-13} = -\frac{52}{-1$	199. Two perpendicular lines intersect on the x-axis. An equation of one line is y = (3) + 9 Find the equation of the other line. Need x-intercept -> subst. 0 in for 'g'. 0 = 3x + 9 -9 = 3x (-3,0) -3 = x M = $-\frac{1}{3}$ through (-3,0) $-\frac{1}{3} = \frac{y^{-0}}{x^{-3}}$ -1(x+3) = 3(y-0) -x-3 = 3y x + 3y + 3 = 0

Horizontal & Vertical Lines:

The equation of a horizontal line that is 3 units above the x-axis will be y = 3 or y - 3 = 0. The equation of a horizontal line that is 12 units below the x-axis will be y = -12 or y + 12 = 0.

The equation of a vertical line 7 units to the right of the y-axis will be x = 7 or x - 7 = 0. The equation of a vertical line 2 units to the left of the y-axis will be x = -2 or x + 2 = 0.

Write the equation of the following lines.

Write the equation of the following lines.

Mixed Practice:

209. Which of the following equations	210. Which of the following passes through
represents the steepest line? $A = A$	(9, -8) and has an x-intercept of $-3?$
a $5x + 4y - 12 = 0$ b $6x + 2y = 14$ c $-3x - 7y - 21 = 0$ c $3y - 3y - 3y - 21 = 0$	a. $3x + 2y + 9 = 0$ b. $5x + 9y + 27 = 0$ c. $2x + 3y + 6 = 0$ $M = \frac{08}{-3 - 9} = \frac{8}{-12} = \frac{-2}{-3}$
d. $12x + 24y + 64 = 0$ $-\frac{12}{29} = -\frac{1}{2}$	d. $4x + 3y + 12 = 0$ $M = \frac{-A}{B} = \frac{-2}{3}$ A > 2, $B = 3$
211. What is unique about lines that are written in the form $x = a$.	212. What is unique about lines that are written in the form $y = b$.
vertical lines	horizontal lines
213. What is the equation, in general form, of the line that passes through the point (6, -3) and is parallel to $y = \frac{2}{3}x + 4$. $\frac{2}{3} = \frac{y+3}{x-6}$ $2x-12 = 3y+9$ $2x-3y-21 = 0$	214. Determine the slope of the line perpendicular to $x - 2y - 3 = 0$. $ \mathfrak{M} = -\frac{\mathfrak{A}}{\mathfrak{B}} = -\frac{1}{-2} = \frac{1}{2} $ $ \mathfrak{M} = -2 $
 215. Determine the equation of the line that contains the diameter of the following circle. Centre (-4,3) Point on circumference (2,-1) 	216. The slope of the line represented by the equation $8x - ky + 2 = 0$ is $\frac{2}{3}$. Determine the value of <i>k</i> . $M = -\frac{A}{B}$
Answer in general form. $M = -\frac{1-3}{2+4} - \frac{2}{-3}$	$\frac{-8}{-k} = \frac{2}{3}$
$\frac{-2}{3} = \frac{y+1}{x-2}$	${2}y ={2}k$ $12 = k$
2x + 3y - 1 = 0 2x + 3y - 1 = 0	

225. Challenge#8

The equation y = 75x + 1500 represents the cost of a wedding reception. The total cost consists of \$1500 fee to rent the hall plus \$75 per guest. Express the equation of this relation using function notation.

$$C(n) = 75n + 1500$$

Linear Functions

Function notation is used to show the relationship between two quantities. The use of function notation allows the reader to identify the dependent and independent variable. Also, the letters chosen often identify what the variables represent.

Eg. The equation y = 75x + 1500 represents the cost of a wedding reception. The total cost consists of \$1500 fee to rent the hall plus \$75 per guest. Express the equation of this relation using function notation.

C(n) = 75n + 1500 Cost is a function of the number of guests.

226. The cost of a taxi ride in Victoria is \$5.25 plus \$0.35 per kilometer. Write an equation using function notation for this relation. C(d) = 0.35d + 5.2	227. J-Tees Pedi-Cabs provide tours for visitors to Victoria. The cost is 25 cents per minute. Write an equation using function notation for this relation (in dollars). 5 C(t) = 0.25t	228. JLA-Skuterz rent gas- powered scooters. The cost is \$40 per day plus 25 cents per kilometre ridden. Write an equation using function notation for this relation. C(h) = 0.25h + 40
229. The skating rink at the recreation centre charges students \$5.00 admission. Write an equation for the cost (C) as a function of the number of students (s). C(s) = 5s	230. The skating rink will let a group of students book the entire rink for \$500. Write an equation for the cost (C) as a function of the number of students (s). C(s) = 500	231. At the same skating rink, another option is to reserve the rink for \$200 and then pay \$4 per student. Write an equation for the cost (C) as a function of the number of students (s). C(s) = 4s + 200

Find the range value for each of the following.

232.C(n) = 25n + 12 Find $C(12)$.	$233.f(x) = \frac{1}{2}x - 3$ Find $f(-3)$		234.h(t) = -250t + 1200 Find $h(20)$.
C(12) = 25(12) + 12 = 312	$f(-3)^{-3} = \frac{1}{2}(-3) - 3$		h(20) = -250/20) + 1200 = -3800
Find the domain value for each of t	2 = -1.5 = - he following.	$ -3 = -9 \\ -2 = -9 \\ $	
235.C(n) = 25n + 12 Find n if $C(n) = 24$.	236. $f(x) = \frac{1}{2}x - 3$ Find x if $f(x) = 12$.		237.h(t) = -250t + 1200 Find t if $h(t) = 1000.$
24 = 25n + 12	$12 = \frac{1}{2}x - 3$ $15 = \frac{1}{2}x$ 30 = x		1000 = -250t +1200 -200 = -250t
12 = n			$\frac{-200}{-250} = t$
25			4 = t 5
238.Below is a graph of C(n).	;	239.Below is c	a graph of f(x).
40^{-10}			
Find C(4).		Find x if $f(x) = 7$.	
c(4) = 40		X = 2	

