Linear Relations: Solutions

This booklet belongs to: Period

LESSON \#	DATE	QUESTIONS FROM NOTES	Questions that I find difficult
		Pg.	
			TEVIEW

Your teacher has important instructions for you to write down below.

Linear Relations

| Linear
 Relations
 SPECIFIC
 OUTCOMES | | | TOPIC |
| :--- | :--- | :--- | :--- | REVIEW EXAMPLE

[C] Communication [PS] Problem Solving, [CN] Connections [R] Reasoning, [ME] Mental Mathematics [T] Technology, and Estimation, [V] Visualization

Key Terms

Term	Definition	Example
Linear Relation		
Linear Function		
Ordered pair		
Slope		
y-intercept		
x-intercept		
Slope-intercept form of a linear equation		
Point-slope form of a linear equation		
General form of a linear equation		
Parallel Lines		
Perpendicular Lines		
Dependent Variable		
Independent Variable		
Linear Function		

Introduction to Linear Relations

We have examined relations between two quantities earlier in this course. Now we will narrow our focus to examine only linear relations.

Linear relations are straight line relationships. Each output value is proportionate to the input value. That is, the change occurs at a constant rate.

Eg. An employee that works for an hourly wage (\$10 per hour).
This is a linear relationship because the employees earnings increase at a constant rate.
The equation that relates the Earnings and the hours worked is $\boldsymbol{E}=\mathbf{1 0}$.

1. Plot the relationship described above if the domain is $\{0,1,2,3,4,5,6,7\}$.

2. What is the shape of the graph you just plotted?
dots form a line
3. Is the relation $E=10 h$ a function? Yes, no input produces
more than one output.
4. Which variable in the relation $E=10 h$ is the dependent variable
'E' depends an h.
5. Challenge \#1: If $y=3 x$, find the missing values of y.

$y=3 x$	
x	y
-2	-6
-1	-3
0	0
1	3
2	6

6. What name do we give the pairs of numbers in each row?
ordered pairs
7. Does $(-8,-24)$ satisfy the equation above.
yes.
$3(-8)=-24$
8. How many pairs of numbers are there that satisfy that equation?

> infinite number
9. What shape do you see if you plot each of the pairs of numbers in the table above?

a straight line

Finding coordinates from an equation:

A Table of Values is a tool used to find ordered pairs from an equation.

$y=3 x$	
x	y

This is a table of values set up to find 5 ordered pairs for the equation $y=3 x$.
Step1: Select 5 input values of \boldsymbol{x} and write them in the x column. Eg. $-2,-1,0,1,2$
Step2: Substitute them into the equation and solve to find the \boldsymbol{y} value.

$y=3 x$	
x	y
-2	-6
-1	-3
0	0
1	3
2	6

${ }^{* *}$ I chose to input values of x, but I could have selected values of y and solved for x (although I find that more difficult in this case).
10. Challenge \#2:

Using the table of values, graph the equation $y=3 x$ on the graph provided.

$y=3 x$	
x	y
-2	-6
-1	-3
0	0
1	3
2	6

Some Algebra Review:

When working with a table of values and linear equations, it is most useful to have 'y' isolated on the left.

Example:

$$
\begin{aligned}
& 2 x+3 y=12 \\
& 3 y=-2 x+12 \\
& y=-\frac{2}{3} x+4
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11. Isolate } y \text {. } \\
& \begin{array}{c}
2 x-4 y=16 \\
-2 x \quad-2 x \\
-4 y=-2 x+16 \\
-4 \quad-4 \quad-4
\end{array} \\
& y=\frac{1}{2} x-4 \\
& \text { 14. Isolate y. } \\
& 6\left(\frac{1}{3} x-\frac{3}{2} y=1\right) \\
& \frac{6}{3} x-\frac{18}{2} y=6 \\
& 2 x-9 y=6 \\
& -9 y=-2 x+6 \\
& y=\frac{2}{9} x-\frac{6}{9} \\
& y=\frac{2}{9} x-\frac{2}{3} \\
& \text { 12. Isolate } \mathrm{y} \text {. } \\
& 4 y-8 x+12=0 \\
& +8 x \quad+8 x \\
& 4 y+12=8 x-12 \\
& \frac{4}{4}=\frac{8 x}{4}-\frac{12}{4} \\
& y=2 x-3 \\
& \text { 15. Isolate } y \text {. } \\
& 4\left(x-\frac{3 y}{4}+9=0\right) \\
& 4 x-\frac{12}{4} y+36=0 \\
& 4 x-3 y=-36 \\
& -3 y=-4 x-36 \\
& y=\frac{4}{3} x+12 \\
& \text { 13. Isolate } y \text {. } \\
& \frac{20}{5}+\frac{3 x}{5}=\frac{5 y}{5} \\
& 4+\frac{3}{5} x=y \\
& y=\frac{3}{5} x+4 \\
& \text { 16. Isolate } y \text {. } \\
& 30\left(\frac{2 x}{3}+\frac{y}{2}-\frac{3}{5}=1\right) \\
& \frac{60 x}{3}+\frac{30 y}{2}-\frac{90}{5}=30 \\
& 20 x+15 y-18=30 \\
& 20 x+15 y=48 \\
& 15 y=-20 x+48 \\
& y=\frac{-20}{15} x+\frac{48}{15} \\
& y=-\frac{4}{3} x+\frac{16}{5}
\end{aligned}
$$

Graphing from a Table of Values.

Using the table of values, graph the equation $y=3 x$ on the graph provided.

$y=3 x$	
x	y
-2	-6
-1	-3
0	0
1	3
2	6

Step1: From the table of values we get the following ordered pairs.
$(-2,-6),(-1,-3),(0,0),(1,3),(2,6)$
Step2: Plot each of the ordered pairs.
Step3: Draw a line through the points with arrows on each end.

Use the table of values, if necessary, to graph each of the following equations.
17. $y=2 x+1$

$y=2 x+1$	
x	y
-2	$-4+1=-3$
-1	$-2+1=-1$
0	1
1	3
2	5

18. $y=4 x-1$

$y=4 x-1$	
x	
-2	
-1	
0	-1
1	3
2	7

19. $3 x+y=-2$

$3 x+y=-2$	
x	y
-2	
-1	
0	
1	
2	

Use the table of values, if necessary, to graph each of the following equations.
20. $y=\frac{x}{2}+1$

$y=\frac{x}{2}+1$	
x	y
-2	
-1	
0	
1	
2	

23. $2 x+3 y=12$

$2 x+3 y=12$	
x	y

22. $y+3=x$

$y+3=x$	
x	y
-2	
-1	
0	
1	
2	

$y=\frac{4}{3} x-2$	
x	y
-2	
-1	
0	
1	
2	

21. $y=\frac{4}{3} x-2$

 .

Graphing Equations: A review from above.

Using a Table of Values:
Step 1: Choose appropriate values of ' x ' to put in the table.
Step 2: Input each ' x ' into the equation to find the corresponding ' y '.
Step 3: Plot the new-found 'ordered pairs'.
Step 4: Draw a line through the points. (be careful of the shape...not all are lines)

In this unit, we will be studying graphs of straight lines and their equations.
We call these LINEAR EQUATIONS.
An equation is said to be linear if it forms a straight line when graphed.

Equation of a Line Property:

The coordinates of every point on the line will satisfy the equation of the line.

> You should REALLY memorize this!
26. How many points do you need to graph a line?

$$
\begin{aligned}
& \text { At least } 2 \text { but more points } \\
& \text { will help eliminate errors. }
\end{aligned}
$$

27. To be safe, at least how many should you have?

$$
3 \text { or more. }
$$

Graph these equations...

$$
\text { 28. } y=-3 x-1
$$

29. $y=5+x$

Graph the following equations, then determine if they are linear or not.

36. Can you describe a "rule of thumb" that will enable you to tell if an equation represents a linear equation or not?

$$
\begin{aligned}
& \text { exponent on the ' } x \text { ' is a } 1 \text { when } \\
& \text { equation is isolated in terms of } y \text {. }
\end{aligned}
$$

Challenge \#3:

The equation $2 x+4 y=16$ is a linear equation.

37. Find the coordinates of the point where the line crosses the y-axis. (Think...what would be the value of ' x ' here?)

38. What is the value of ' x ' where the line crosses the y-axis?

39. Find the coordinates of the point where the line crosses the x -axis.

40. What is the value of " y '" where the line crosses the x -axis?

Intercepts

The location where a line passes through the x-axis is called the \boldsymbol{x}-intercept. This point will have the coordinates $(x, 0)$

The location where a line passes through the y-axis is called the \mathbf{y}-intercept. This point will have the coordinates $(0, y)$
Consider: $2 x+4 y=16$

This line has an x-intercept at $(8,0)$.
And a y-intercept at $(0,4)$.
You may see this written as:
x-intercept is 8
y -intercept is 4

Calculating intercepts from an equation:

The x-intercept will have coordinates ($x, 0$). This means we can substitute 0 in for y and solve to find the x intercept. The y-intercept will have coordinates $(0, y)$.

Eg. Find the x-intercept for

$$
\begin{array}{lll}
2 x+4 y=16 & \text { Find the } y \text {-intercept: } & 2 x+4 y=16 \\
2 x+4(0)=16 & & 2(0)+4 y=16 \\
2 x=16 & 4 y=16 \\
x=8 & & y=4
\end{array}
$$

Some notes here. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculate the intercepts and graph each equation using them. Fractions can be estimated on the grid.

50. When do you think it would be appropriate (or the best scenario) to graph a line using the intercepts as opposed to using some other technique?

When the coefficients of x and y are factors of the constant term. This creates intercepts that are integers.

Pa g e $\mathbf{1 4} \mid$ Linear Relations
Copyright Mathbeacon.com. Use with permission. Do not use after June 2011.

Answer the following questions about intercepts and linear relations. For these questions the domain is all real numbers.
51. Draw a graph of a linear relation that has two intercepts.

54. Draw a graph of a linear relation that has one negative and one positive intercept.

57. Consider your answer to the previous question. What other type of line could you draw that would satisfy the problem?

$$
\begin{aligned}
& \text { Must be either } \\
& \text { horizontal or } \\
& \text { vertical. }
\end{aligned}
$$

55. Draw a graph of a linear relation that as an infinite number of intercepts.

58. Find the intercepts of the following linear equation.
$\frac{x}{2}+\frac{y}{3}=1$

y-int.	x-int.	y-int	x-int
$\frac{0}{2}+\frac{y}{3}=1$	$\frac{x}{2}+\frac{0}{3}=1$	$y=(0)^{2}-4$	$0=x^{2}-4$
$\frac{y}{3}=1$	$\frac{x}{2}=1$	$y=-4$	$4=x^{2}$
$y=3$	$x=2$	$(0,-4)$	$\pm 2=x$
$(0,3)$	$(2,0)$		$(2,0)$ and $(-2,0)$

Slope of a Line

Challenge \#4:

60. Plot the following points:
$(-1,-5),(2,-4),(5,-3),(8,-2)$

61. Draw a line through the points you plotted.
62. Choose three sections of the line you just plotted and find their slopes.

Slope of section 1:

$$
m=\frac{\text { rise }}{\text { run }}=\frac{1}{3}
$$

Slope of section 2 :

$$
m=\frac{1}{3}
$$

Slope of section 3:

$$
m=\frac{1}{3}
$$

63. What do you notice?
all sections have
same slope

Some notes here...
\qquad

Slope of a Line

Recall from our discussion of line segments that slope can be calculated using: $\boldsymbol{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or $\frac{\text { rise }}{\text { run }}$ For a straight line, the slopes of all segments on the line are equal. That is, if you find the slope of any two parts of the line, they will be equal.

Pick any three segments of the line and calculate the slope.

Slope will always be $\frac{1}{3}$.

The equations discussed earlier in this booklet result in lines that continue in two directions. Working with slope allows us to extend the line if we need to.

Remember:

- Parallel lines have equal slopes.
- Perpendicular lines have slopes that are negative reciprocals.
* You may need to find 2 points using table of values thense slope formula. As ...yow move forward yow. will find at her near.......

64. Find the slope of the line represented by the equation $y=3 x-5$.
$\begin{array}{ll}(0,-5) & \frac{-2-5}{1-0}=\frac{3}{1} \\ (1,-2)\end{array} \quad m=3$
65. Find the slope of the line represented by the equation $y-4=3(x-5)$.

$$
y-4=3 x-15
$$

Slope is

65. Find the slope of the line represented by the equation $2 x+5 y=20$.

$$
\begin{array}{ll}
5 y & =-2 x+20 \\
y & =-2 \\
& m=-\frac{2}{5}
\end{array}
$$

67. Find the slope of the line represented by

$$
\begin{aligned}
& y-4=3 x-15 \\
& y=3 x-11
\end{aligned} \quad m=3 \quad m=\frac{1}{3}
$$ the equation $\frac{1}{3}(x+2)=y-1$.

$y-4$	$=3 x-15 \quad(m=3$
y	$=3 x-11$

68. Find the slope of the line below.
69. Find the slope of the line below.

70. Draw a line through $T(5,7)$ with slope $\frac{2}{5}$.

71. Draw a line through $U(2,-2)$ perpendicular to the line in the question above.

72. The slope of a line is $\frac{3}{2}$. If the line passes through point $B(5,2)$, find the coordinates of another point.

$$
\begin{aligned}
& \frac{3}{2}=\frac{y-2}{x-5} \\
& \frac{3}{2}=\frac{y-2}{1-5} \\
& \frac{3}{2}=\frac{y-2}{-4} \\
& -12=2 y-4 \\
& \begin{array}{l}
-8=2 y \\
-4=y
\end{array} \\
& \text { (1) Substitute } \\
& \begin{array}{l}
\text { slope t the } \\
\text { point. }
\end{array} \\
& \text { (2) Pick a value: } \\
& \text { for } x \text { (or } y \text {). } \\
& \text { (3) Cooss-M attiply } \\
& \begin{array}{c}
\therefore(1,-4) \text { is on } \\
\text { the line. }
\end{array}
\end{aligned}
$$

76. Julanya's internet provider charges a flat fee for the first 8 hr of access per month, plus an hourly rate for additional access. One month, 15 hr of usage cost her $\$ 25.88$. The next month, 27 hr of access cost her \$49.76.
a) Graph the data.

77. Find the hourly fate for access above $8 \mathrm{hr} /$ month.

$$
\begin{aligned}
& \text { e) for access above } 8 \mathrm{hr} / \text { month. } \\
& \text { slope } \frac{49.76-25.88}{27-15}=\frac{23.88}{12}={ }^{51} 1.99 / \mathrm{hr}
\end{aligned}
$$

78. What word is synonymous with rate in this unit?

$$
\begin{aligned}
& \text { rate in this unit? } \\
& \text { slope is a measure of rate of change }
\end{aligned}
$$

79. Find the flat fee for the first 8 hours. (Where will you find this value on the graph?)

$$
\begin{aligned}
& \begin{array}{c}
\text { slope } \\
\text { formula }
\end{array}\left\{m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right. \\
& \frac{49.76-y}{27-8}=1.99 \\
& \frac{49.76-y}{19}=1.99 \\
& 49.76-y=19(1.99) \\
& 49.76-y=37.81 \\
& -y=-11.95 \\
& y=11.95 \\
& \text { Alternate Method: Work backwards from } \\
& 15 \underbrace{15}_{7 \text { hrs }} 8 \text { hrs }(15,25.88) \\
& 15 \text { hours subtract } 7 \text { hrs cost } \\
& 25.88-1.99(7) \\
& =11.95\left\{\begin{array}{r}
\text { the cost for } \\
8 \text { hrs usage } \\
\therefore \text { the } \\
\text { flat fee }
\end{array}\right.
\end{aligned}
$$

Find the slope of the line passing through the points:
80. $(2,1)$ and $(6,6)$

$$
m=\frac{6-1}{6-2}=\frac{5}{4}
$$

81. $(-5,2)$ and $(4,2)$
$m=\frac{2-2}{4--5}=0$
82. $(-3,0)$ and $(3,-4)$

$$
\begin{aligned}
m=\frac{-4-0}{3--3} & =\frac{-4}{6} \\
& =-\frac{2}{3}
\end{aligned}
$$

83. The slope of a line is -2 . The line passes through $(0,0)$ and $(-3, y)$. Find the value of y.

$$
\begin{aligned}
-\frac{2}{1} & =\frac{y-0}{-3-0} \\
-\frac{2}{1} & =\frac{y}{-3} \\
6 & =y
\end{aligned}
$$

84. A line has a slope of 1.5. It passes through $(-2,1)$ and $(x, 7)$. Find the value of x.
$1.5=\frac{3}{2}=\frac{7-1}{x--2}$

$$
\frac{3}{2}=\frac{6}{x+2}
$$

$$
3(x+2)=12
$$

$$
3 x+6=12
$$

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

85. Challenge\#5: Show that $(7,-1)$ is on the line $y=2 x-15$

Algebraically:

$$
\begin{aligned}
& \begin{aligned}
& y=2 x-15 \\
&-1=2(7)-15\} \text { substitute } \\
&(7,-1)
\end{aligned} \\
& -1=14-15 \\
& -1=-1 \\
& \text { equation satisfied } \\
& \therefore(7,-1) \text { is on } \\
& \text { the line. }
\end{aligned}
$$

Graphically:

The Equation of a Line

As you have seen, equations such as $2 x+3 y=12$ or $3 y=x+9$ or $y=\frac{5}{6} x-4$ produce straight lines when graphed. They are linear equations.

Linear Equations may be written in several forms:

$$
\begin{array}{ll}
\text { Slope-Intercept Form } & y=3 x+2 \\
\text { Point-Slope Form } & m(x-3)=(y-2) \\
\text { General Form } & 3 x-y+2=0
\end{array}
$$

Recall the Equation of a Line Property:

The coordinates of every point on the line will satisfy the equation of the line.

Eg.1. Show that $(7,-1)$ is on the line $y=2 x-15$

```
\(y=2 x-15\)
\((-1)=2(7)-15\)
\(-1=14-15\)
\(-1=-1\)
If \((7,-1)\) is on the line, it will satisfy the equation.
Substitue the ordered pair into the equation.
Does the left side = right side?
Yes. The point IS on the line.
```


Determine if the following points lie on the line $y=2 x+4$
86. $(-10,24)$
$24=2(-10)+4$
$24=-20+4$ 24

87. $(5,14)$

88. $(-7,-10)$
$-10=2(-7)+4$
$-10=-14+4$

- 10

Determine if the following points lie on the tine $3 x-2 y+6=0$
89. $(10,18)$
$3(10)-2(18)+6=0$
$30-36+6=0$

$$
\text { 90. }(0,-3)
$$

$$
3(0)-2(-3)+6=0
$$

$$
0+6+6=0
$$

$$
\text { 91. }(-6,-6)
$$

91. $(-6,-6)$
$3(-6)-2(-6)+6=0$
$-18+12+6=0$ $-6+6=0$

92. Determine if the point $(2,-3)$ is on the line $y=3 x-9$.
$-3=3(2)-9$
$-3=6-9$
$-3=-3$
93. Determine if the point $(-1,-4)$ is on the line $3 x-2 y-11=0$.

$$
\left.\begin{array}{c}
3(-1)-2(-4)-11=0 \\
-3+8-11=0 \\
-6=0
\end{array}\right] \text { False }
$$

94. Determine if the point $(2,-3)$ is on the line $y+1=\frac{3 x}{2}$.

$$
\begin{aligned}
-3+1 & =\frac{3(2)}{2} \\
-2 & =\frac{6}{2} \\
-2 & =3
\end{aligned}
$$

95. Determine if the set of ordered
$(2,3),(3,4),(4,5),(5,6)$

Explain why or why not:
Yes, it is on the lime because when
the coordinates $2,-3$ are substituted
into the equation, left side and right
side are equal.

Explain why or why not:

No $(-1,-4)$ does not satisfy the equation. \qquad

Explain why or why not:

(2,-3) does not satisfy the
...equation \qquad
Explain why or why not:
YEs, rate of change (slope) is constant.

96. Determine if the set of ordered pairs represents a linear relation.
$(1,1),(1,2),(1,3),(1,4)$

Explain why or why not:
$y \in S$, it is a vertical line
97. Determine if the set of ordered pairs represents a linear relation.
$(2,1),(3,0),(4,-1),(5,-2)$

Explain why or why not:
YES, constant rato f change
X-coordinates : +1 constant
y--coood...................ccons.tmont

Equation of a Line: Slope-Intercept Form

98. Graph the line $y=\frac{2}{3} x-5$ using a table of values.

99. What is the slope of the line above?
$\frac{2}{3}$
100. Graph the line $y=-3 x+5$ using a table of values.

101. What is the slope of the line above?

$$
-3
$$

103. What is the y-intercept of the line above?

$$
5
$$

104. Compare these values to the equation. What do you notice? $y=\frac{2}{3} x-5$

105. Compare these values to the equation. What do you notice?

We say the equations above are written in slope-intercept form. A general formula for an equation in slope intercept form is $\quad y=m x+b$

Remember, x and y are the coordinates of ANY point on the line. When substituted, they will satisfy the equation. See your work on the previous page!

State the slope and y-intercept for the line represented by each equation.

```
106. \(y=-3 x+2\)
slope: - 3
\(y\)-int: 2
\begin{tabular}{c|c} 
107. \(y=-\frac{3}{5} x-7\) & 108. \(y=\frac{9}{2} x-\frac{3}{2}\) \\
slope \(:-\frac{3}{5}\) & slope \(: \frac{9}{2}\) \\
\(y\)-int \(:-7\) & y-int \(:-\frac{3}{2}\)
\end{tabular}
```

Write the equation of each line given the slope and y-intercept.

109. $m=2, b=-5$	$110 . m=\frac{7}{3}, b=\frac{2}{3}$	$m=-3, b=-2$
$y=2 x-5$	$y=\frac{7}{3} x+\frac{2}{3}$	$y=-3 x-2$

For each line below, state the slope, y-intercept, and equation.

For each line below, state the slope, y-intercept, and equation.

Graph the equations below by finding the slope and y-intercept from the equation.
123.

$$
y=-x+3
$$

125.

$$
y-5=\frac{1}{3} x-3
$$

127.
$12\left(\frac{x}{3}-\frac{y}{4}=1\right)$
128.

$12\left(\frac{2 x}{3}+\frac{3 y}{4}=-6\right)$
$8 x+9 y=-72$ $9 y=-8 x-72$
$4 x-3 y=12$

124.
$2 y=-10 x+12$
$y=-5 x+6$

126.

$$
y=\frac{1}{3} x+2
$$

Determine the value of b for the equation $y=3 x+b$ if the line passes through the following points. Then write the equation in slope-intercept form.

What you just did above is one way that you will be able to find the equation of a line. IF you have the slope \qquad or the y-intercept you can input the \qquad coordinates of a point on the line to solve for the unknown part of the equation.

Then you will write the full equation with \qquad slope and \qquad in place of m and b.

The following is another method.

The Equation of a Line

The three forms

Write in general form.

$138 . y=3 x-5$	$139 . y-5=x+7$	$140.5-2 x=-4 y+2$
$3 x-y-5=0$	$x-y+12=0$	$2 x-4 y-3=0$
$3\left(-\frac{1}{3} x-4 y=2\right)$	$342\left(y-5=\frac{2}{3} x+7\right)$	$12\left(5=\frac{2}{3} y+\frac{3}{4} x\right)$
$-x-12 y=6$	$3 y-15=2 x+21$	$60=8 y+9 x$
$x+12 y+6=0$	$2 x-3 y+36=0$	$9 x+8 y-60=0$

144. Challenge \#6

Write the equation of the line that passes through $A(2,5)$ and has slope 3 . Express your answer in general from and in slope intercept form.
Method 1
$y=m x+b$
$y=3 x+b$
$5=3(z)+b$
$5=6+b$
$-1=b$
$\therefore y=3 x-1$

Pa ge $\mathbf{2 8}$ |Linear Relations

Method 2
$\begin{aligned} m & =\frac{y_{2}-y_{1}}{x_{t}-x_{1}} \\ \frac{3}{1} & =\frac{y-5}{x-2} \\ 3(x-2) & =y-5\} \text { Po.nt-slope form } \\ 3 x-6 & =y-5 \\ 3 x-1 & =y \\ y & =3 x-1 \text { or } 3 x-y-1=0\end{aligned}$
Copyright Mathbeacon.com. Use with permission. Do not use after June 2011.

The Equation of a Line

IMPORTANT!!! There is only one line that passes through a given point with a given slope.

Given the slope and a point:

Eg.1. A line passes through $A(2,5)$ and has slope 3. Write the equation of the line.
Use the slope formula :
$\boldsymbol{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Cross-Multiply. This creates the Point-Slope form of an equation.
$\boldsymbol{m}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)=\boldsymbol{y}_{2}-\boldsymbol{y}_{1} \quad$ Fill in what you know. $m=3$. Substitute the given point in for x_{1} and y_{1}.
$3(x-2)=(y-5) \quad$ This is our equation in point-slope form.
We no longer need the subscripts on x and y
$3 x-6=y-5 \quad$ Expanded.
$3 x-y-1=0 \quad$ Collecting the terms to the left side is called writing the equation in general form.
Or
$y=3 x-1 \quad$ Isolate for ' y ' to get the equation in slope-intercept form.

Write the equation of the line that passes through the given point and has the given slope. Express the equation in a) point-slope form b) general form c) slope-intercept form.

Write the equation of the line that passes through the given point and has the given slope. Express the equation in a) point-slope form b) slope-intercept form c) general form.

157. Challenge \#7:

Write the equation of a line in general form given that the line passes through $(3,4)$ and $(4,6)$.

$$
m=\frac{6-4}{4-3}=\frac{2}{1} / \left\lvert\, \begin{aligned}
& y-4=2(x-3) \\
& y-4=2 x-6 \\
& 2 x-y-2=0
\end{aligned}\right.
$$

Given two points:

When given two points we must first find the slope of the line. Then we will follow the same process as above.

Write the equation of the line that passes through $(3,4)$ and $(4,6)$.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Find the slope. } \\
m=\frac{6-4}{4-3}=\frac{2}{1}=2 & \text { The slope is } 2 . \\
2=\frac{y-4}{x-3} & \text { Substitute slope and ONE of the points. } \\
2(x-3)=y-4 & \text { Cross-multiply. Point-slope form } \\
2 x-6=y-4 & \text { Expand and simplify. } \\
2 x-y-2=0 & \text { Write in general form. } \\
y=2 x-2 & \text { And in slope-intercept form if necessary. }
\end{array}
$$

Write the equation of the line that passes through the following two points in general form.
158. $(3,4)$ and $(4,6)$

Answered above.

Explain your reasoning
First find slope Then use the
Slope and ONE of the given

\qquad
\qquad

$$
\begin{aligned}
& \text { 159. }(-2,-4) \text { and }(0,6) \\
& m=\frac{6--4}{0--2}=\frac{10}{2}=5 \\
& y-6=5(x-0) \\
& y-6=5 x \\
& y=5 x-6 \\
& 5 x-y-6=0
\end{aligned}
$$

Explain your reasoning

First find slope. Then use the
Slope and points- with the point- stope- formula ..towrite the ...equation.
\qquad
\qquad
\qquad
Write the equation of the line that passes through the following two points in general form.

Working With Linear Equations:

- Be able to convert equations between general form and slope-intercept form.
- Be able to graph equations given to you in either form.
- Be able to make comparisons based on parallel and perpendicular lines.

Eg.1. Graph the line $3 x+2 y-6=0$.
Your Options:

1) use intercepts
2)make a table of values
3)convert to slope-intercept form

I chose option 1 because this equation allows for easy calculations to find both intercepts.

$$
\begin{array}{cccc}
3(0)+2 y-6=0 & 2 y-6=0 & 2 y=6 & y=3 \\
\text { The } y \text {-intercept is } 3 . & & \\
3 x+2(0)-6=0 & 3 x-6=0 & 3 x=6 & x=2
\end{array}
$$

The x-intercept is 2 .
Plot the two points \& draw the line through them.

My second choice would have been option 3, conversion to slope-intercept form.
$3 x+2 y-6=0$
$2 y=-3 x+6$
$y=\frac{-3}{2} x+3$

Plot the y-intercept then use the slope to plot another point, draw a line through the two points.

Graph the lines represented by each of the following equations. Use any method.

Graph the lines represented by each of the following equations. Use any method.

Match the following graphs to their corresponding equations. Choose the best match.

P a g e $\mathbf{3 5} \mid$ Linear Relations
175. Which equation on the right represents the graph below?

a) $2 x-3 y+6=0$
b) $3 x-2 y+6=0$
c) $3 x+2 y+6=0$
d) None of the above $m=-\frac{3}{2}, y$-int $:-3$
176. Which of the following equations represents the word statement "each element of the range is equal to one less than double an element in the domain." $\quad y=2 x-1$
(a.) $2 x-y-1=0$
b. $x-2 y=-1$
c. $2 x+y+1=0$
179. Write a "word statement" to describe the following equation.
$y=3 x-2$
range is two less
than triple an element in the clomain
182. Which of the following equations represent the same line as

$$
y=3 x-2 ?
$$

Circle all that apply.

177. Which of the following equations represents the word statement "each element of the range is equal to two more than one third an element in the domain." $y=\frac{1}{3} x+2$

a. $3 x-y=6^{3 y=x+6}$	domain." $\quad 3 y=2 x-1$
b. $x-3 y=-6$ a. $2 x-3 y=-1$ c. $x+3 y+6=0$ b.) $2 x-3 y=1$ c. $2 x+3 y=1$	

180. Write a "word statement" to describe the following equation.
$2 x+4 y-8=0$

$$
\begin{aligned}
& x+2 y-4=0 \\
& x+2 y=4
\end{aligned}
$$

The sum of an element in
the domain and double its range is four.
183. Which of the following equations represent the same line as

$$
5 x-2 y+10=0 ?
$$

Circle all that apply. $\begin{aligned}-2 y & =-5 x-10 \\ y & =\frac{5}{2} x+5\end{aligned}$
(e.) $y=\frac{5}{2} x+5$
f. $\frac{2}{5}(x-4)=y-15$
fa. $x=\frac{2}{5} y-2$
h. none
181. Write a "word statement" to describe the following equation.
$3 x-5 y=20$

$\begin{aligned} &$$$
y
$$$=\frac{3}{5} x-4 \\ & \text { The range is four less }\end{aligned}$ than three-froths an element in the domain 184. Which of the following equations represent the same line as

$$
y-4=2(x+1) ?
$$

Circle all that apply

$$
\begin{aligned}
& y-4=2 x+2 \\
& y=2 x+6
\end{aligned}
$$

Find the slope and y-intercept, write the equation in slope-intercept form, then in general
form.

$m-\frac{5}{3}$
$0 \quad 4$
slope-intercept form $\frac{y}{3 y}=-\frac{5}{3} x+4$
general form $5 x+3 y-12=0$
187.
188.

$m-\frac{2}{3}$ b 2
slope-intercept form $\frac{y=-\frac{2}{3} x+2}{3 y}=-2 x+6$
general form $2 x+3 y-6=0$

Parallel and Perpendicular Lines

Recall:

- Parallel lines have equal slopes.
- Perpendicular lines have slopes that are negative reciprocals.

For each line below, state the slope of a line that would be (a) parallel (b) perpendicular.
189. $y=3 x-5$
a) 3
b) $-\frac{1}{3}$
190. $y-5=-\frac{2}{3} x$
a) $-\frac{2}{3}$
b) $\frac{3}{2}$
191. $5 x-3 y=14$
a) $\frac{5}{3}$
b) $-\frac{3}{5}$

Eg.1. Write the equation of the line parallel to $5 x-8 y+12=0$ and through the point $(-2,3)$.

Parallel means same slope. So we need to find slope of $5 x-8 y+12=0$.

$$
\begin{array}{ll}
5 x-8 y+12=0 & \text { Convert to slope intercept form. } \\
-8 y=-5 x-12 & \text { This gives us the slope. } m=\frac{5}{8} \\
y=\frac{5}{8} x+\frac{12}{8} &
\end{array}
$$

Use the slope, $m=\frac{5}{8}$ and the point $(-2,3)$ to write the equation.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Fill in what you know. $m=\frac{5}{8}$. Substitute point $(-2,3)$
$\frac{5}{8}=\frac{y-3}{x--2}$
Cross-Multiply.
$5(x+2)=8(y-3)$
Simplify.
$5 x+10=8 y-24$
$5 x-8 y+34=0$
General Form
$y=\frac{5}{8} x+\frac{17}{4}$
Slope-Intercept Form
192. Write the equation of the line parallel to $4 x-6 y+12=0$ and through the point $(5,7)$.

$$
\text { Find: } \begin{aligned}
4 x-6 y & +12=0 \\
-6 y & =-4 x-12 \\
y & =\frac{-4}{-6} x+2 \quad m=\frac{2}{3} \\
y & =\frac{2}{3} x+2 \\
\frac{2}{3} & =\frac{y-7}{x-5} \\
3(y-7) & =2(x-5) \\
3 y-21 & =2 x-10 \\
2 x-3 y & +11=0 \\
y & =\frac{2}{3} x+\frac{11}{3}
\end{aligned}
$$

Explain your reasoning
If written $A x-B_{y}+C=0$
Slope will be $\frac{-A}{B}$. Parallel
means same slope.
I will use slope formula then
coss multiply and simplify....

Eg.2. Write the equation of the line perpendicular to $3 x+2 y-4=0$ and through the point $(2,3)$.

Perpendicular means slopes are negative reciprocals.
Step 1: Find the slope of $3 x+2 y-4=0$.
$3 x+2 y-4=0 \quad$ Convert to slope-intercept form.
$2 y=-3 x+4$
$y=\frac{-3}{2} x-\frac{4}{2} \quad$ This line has a slope, $m=\frac{-3}{2}$.
The perpendicular line will have a slope of $m=\frac{2}{3}$

Use: $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\frac{2}{3}=\frac{y-3}{x-2}$
Fill in what you know. $m=\frac{2}{3}$. Substitute point $(2,3)$
$2(x-2)=3(y-3) \quad$ Cross-Multiply.
$2 x-4=3 y-9 \quad$ Simplify.
$2 x-3 y+5=0 \quad$ General Form
$y=\frac{2}{3} x+\frac{5}{3} \quad$ Slope-Intercept Form
193. Write the equation of the line perpendicular to $4 x+3 y-24=0$ and through the point $(1,4)$.

$$
\begin{aligned}
& \quad m=-\frac{A}{B}=\frac{-4}{3} \\
& \therefore m_{\text {b }}=\frac{3}{4} \\
& \frac{3}{4}=\frac{y-4}{x-1} \\
& 3(x-1)=4(y-4) \\
& 3 x-3=4 y-16 \\
& 3 x-4 y+13=0 \\
& \quad \text { or } \quad y=\frac{3}{4} x+\frac{13}{4}
\end{aligned}
$$

Eg.3.Write an equation for the line through $C(2,4)$ that is perpendicular to the line through $A(1,2)$ and $B(4,8)$.

First find slope $A B . \quad m=\frac{8-2}{4-1}=\frac{6}{3}=2 \quad$ Therefore, the perpendicular line has slope, $m=\frac{-1}{2}$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\frac{-1}{2}=\frac{y-4}{x-2}$
$-1(x-2)=2(y-4) \quad$ Simplify.
$-x+2=2 y-8$
$x+2 y-10=0$
$y=-\frac{1}{2} x+5$

Fill in what you know: $m=\frac{-1}{2}$. \& substitute point $(2,4)$

Cross-Multiply.

Slope-Intercept Form
194. Write an equation for the line through $C(1,2)$ that is perpendicular to the line through $A(2,4)$ and $B(5,5)$.

$$
\begin{array}{ll}
m=\frac{5-4}{5-2}=\frac{1}{3} & \text { Explain your reasoning } \\
m b=-\frac{3}{1} &
\end{array}
$$

\qquad
\qquad
$-\frac{3}{1}=\frac{y-2}{x-1}$
$-3(x-1)=1(y-2)$
$-3 x+3=y-2$

$$
y=-3 x+5
$$

\qquad
\qquad
\qquad
\qquad

$$
3 x+y-5=0
$$

\qquad
195. Write an equation for the line through $Q(1,2)$ that is perpendicular to the line through $R(-2,0)$ and $S(3,5)$.

$$
m=\frac{5-0}{3--2}=\frac{5}{5}=1
$$

$$
m_{h}=-1
$$

$$
\begin{aligned}
& \text { I will use point-slope form this time. } \\
& \begin{array}{l}
y-2=-1(x-1) \\
y-2=-x+1 \\
y=-x+3 \quad \text { or } x+y-3=0
\end{array}
\end{aligned}
$$

Determine the equation of the following lines. Answer in general form.
196. The line parallel to $2 x-3 y+1=0$ and passing through the point $(1,2)$.
$\eta=\frac{-A}{B}=\frac{-2}{-3}=\frac{2}{3}$
$\frac{2}{3}=\frac{y-2}{x-1}$
$2(x-1)=3(y-2)$
$2 x-2=3 y-6$
$2 x-3 y+4=0$
198. The line perpendicular to
$3 x-12 y+16=0$ and having the same y-intercept as $14 x-13 y-52=0$.
$m=\frac{-A}{B}=\frac{-3}{-12}=\frac{1}{4} \| y-i n t=\frac{-C}{B}=\frac{52}{-13}=$
$\therefore m_{m_{1}}=\frac{-4}{1}$ through $(0,-4)$
$-\frac{4}{1}=\frac{y--4}{x-0}$
$-4(x-0)=1(y+4)$
$-4 x=y+4$
$4 x+y+4=0$
197. The line perpendicular to $x-5 y+2=0$ and passing through the point $(-2,5) . \quad \eta=\frac{-A}{B}$

$$
\begin{aligned}
& m_{n}=-\frac{5}{1} \\
& \frac{-5}{1}=\frac{y-5}{x--2} \\
& -5(x+2)=1(y-5) \\
& -5 x-10=y-5 \\
& 5 x+y+5=0
\end{aligned}
$$

199. Two perpendicular lines intersect on the x-axis. An equation of one line is $y=3 x+9$ Find the equation of the (other line.
need x - intercept \rightarrow subst. 0 in for ' y '.
$m_{\text {L }}=-\frac{1}{3}$ through $(-3, \theta)$

$$
-\frac{1}{3}=\frac{y-0}{x--3}
$$

$$
-1(x+3)=3(y-0)
$$

$$
-x-3=3 y
$$

$$
x+3 y+3=0
$$

Horizontal \& Vertical Lines:

The equation of a horizontal line that is 3 units above the x-axis will be $\boldsymbol{y}=\mathbf{3}$ or $\boldsymbol{y}-\mathbf{3}=\mathbf{0}$.
The equation of a horizontal line that is 12 units below the x-axis will be $y=-12$ or $y+12=0$.

The equation of a vertical line 7 units to the right of the y-axis will be $\boldsymbol{x}=\mathbf{7}$ or $\boldsymbol{x}-\mathbf{7}=\mathbf{0}$. The equation of a vertical line 2 units to the left of the y-axis will be $x=-2$ or $x+2=0$.

The equation of this line is $x=5$.

Write the equation of the following lines.

Write the equation of the following lines.

Mixed Practice:

209. Which of the following equations represents the steepest line?
a $5 x+4 y-12=0 \quad-\frac{5}{4} \quad$ slope $=\frac{-A}{B}$
(b) $\begin{aligned} & 5 x+4 y-12=0 \\ & 6 x+2 y=14\end{aligned} \quad \frac{6}{2}=-3$
c. $-3 x-7 y-21=0 \quad \frac{3}{-7}$
d. $12 x+24 y+64=0 \frac{-12}{24}=-\frac{1}{2}$
210. What is unique about lines that are written in the form $x=a$.
vertical lines
211. What is the equation, in general form, of the line that passes through the point $(6,-3)$ and is parallel to $y=\frac{2}{3} x+4$.

$$
\begin{aligned}
& \frac{2}{3}=\frac{y+3}{x-6} \\
& 2 x-12=3 y+9 \\
& 2 x-3 y-21=0
\end{aligned}
$$

215. Determine the equation of the line that contains the diameter of the following circle.
Centre $(-4,3)$
Point on circumference $(2,-1)$

Answer in general form.

$$
\begin{aligned}
& m=\frac{-1-3}{2+4} \frac{-4}{6} \\
& \frac{-2}{3}=\frac{-2}{3} \\
& -2 x+2 \\
& 2 x+4 y-1=3 y+3
\end{aligned}
$$

210. Which of the following passes through $(9,-8)$ and has an x-intercept of $\frac{-3 ?}{(-3,0)}$
a. $3 x+2 y+9=0$
b. $5 x+9 y+27=0$
$\eta=\frac{0--8}{-3-9}=\frac{8}{-12}=\frac{-2}{3}$
c. $2 x+3 y+6=0$
$m=\frac{-A}{B}=\frac{-2}{3}$
$A>2, B=3$
211. What is unique about lines that are written in the form $y=b$.
horizontal lines
212. Determine the slope of the line perpendicular to $x-2 y-3=0$.

$$
\begin{aligned}
& m=-\frac{A}{B}=\frac{-1}{-2}=\frac{1}{2} \\
& \therefore m_{n}=-2
\end{aligned}
$$

216. The slope of the line represented by the equation $8 x-k y+2=0$ is $\frac{2}{3}$. Determine the value of k.

$$
\begin{aligned}
& m=-\frac{A}{B} \\
& \frac{-8}{-h}=\frac{2}{3} \\
&-24=-2 h \\
& 12=h
\end{aligned}
$$

217. What is the equation of a line with undefined slope and an x-intercept of 5 . Write your answer in general form.

$$
\begin{array}{r}
\text { vertical } \therefore x=5 \\
x-5=0
\end{array}
$$

218. Write the equation $y=\frac{1}{5} x-4$ in the form $A x+B y+C=0$ where A is positive and all coefficients are rational numbers?

$$
\begin{aligned}
5(y & \left.=\frac{1}{5} x-4\right) \\
5 y & =x-20 \\
x & -5 y-20=0
\end{aligned}
$$

 parallel to $3 x-6 y+12=0$.

$$
\eta=\frac{-A}{B}=\frac{-3}{-6}=\frac{1}{2}
$$

$$
\therefore \frac{-2}{h}=\frac{1}{2} \quad h=-4
$$

221. The slope of the roof on Mr. J's hidden surf shack is $\frac{4}{3}$. If the roof is 14 m tall, how wide is it?

$$
\begin{aligned}
\text { width } & =2 x \\
& =21 \mathrm{~m}
\end{aligned}
$$

222. Anya is building a picnic table for her backyard. The slope of the table legs is 2 and the table height is 90 cm . Find the length of a table leg to the nearest cm .

$$
\begin{array}{rl}
\frac{2}{1}=\frac{90}{x} & 90^{2}+45^{2}=l^{2} \\
2 x=90 & 10125=l^{2} \\
x=45 & 100.6=l
\end{array}
$$

223. Write an equation that represents the graph below.

224. What is a possible relationship for the graph (and equation) above?

Many possibilities. Something that has a foxed cost; a rate,
sg. Tune -up + additional work at $\$ 150$ per hour.

Eg. Banquet hall rental plus
$\$ / 50$ per guest for food.

225. Challenge\#8

The equation $y=75 x+1500$ represents the cost of a wedding reception. The total cost consists of $\$ 1500$ fee to rent the hall plus $\$ 75$ per guest. Express the equation of this relation using function notation.

$$
C(n)=75 n+1500
$$

Linear Functions

Function notation is used to show the relationship between two quantities.
The use of function notation allows the reader to identify the dependent and independent variable. Also, the letters chosen often identify what the variables represent.

Eg. The equation $y=75 x+1500$ represents the cost of a wedding reception. The total cost consists of $\$ 1500$ fee to rent the hall plus $\$ 75$ per guest. Express the equation of this relation using function notation.

$$
c(n)=75 n+1500 \quad \text { cost is a function of the number of guests. }
$$

226. The cost of a taxi ride in Victoria is $\$ 5.25$ plus $\$ 0.35$ per kilometer. Write an equation using function notation for this relation.

$$
C(d)=0.35 d+5.25
$$

228. JLA-Skuterz rent gaspowered scooters. The cost is $\$ 40$ per day plus 25 cents per kilometre ridden. Write an equation using function notation for this relation.

$$
c(h)=0.25 k+40
$$

229. The skating rink at the recreation centre charges students $\$ 5.00$ admission. Write an equation for the cost (C) as a function of the number of students (s).

$$
C(s)=5 s
$$

227. J-Tees Pedi-Cabs provide tours for visitors to Victoria. The cost is 25 cents per minute. Write an equation using function notation for this relation (in dollars).
$c(t)=0.25 t$
228. The skating rink will let a group of students book the entire rink for $\$ 500$. Write an equation for the cost (C) as a function of the number of students (s).
$C(5)=500$
229. At the same skating rink, another option is to reserve the rink for $\$ 200$ and then pay $\$ 4$ per student. Write an equation for the cost (C) as a function of the number of students (s).

$$
C(s)=4 s+200
$$

Find the range value for each of the following.

$$
\begin{aligned}
& \text { 232. } C(n)=25 n+12 \\
& \text { Find } C(12) \text {. } \\
& C(12)=25(12)+12 \\
& =312 \\
& \text { 233. } f(x)=\frac{1}{2} x-3 \\
& \text { Find } f(-3) \text {. } \\
& f(-3)=\frac{1}{2}(-3)-3 \\
& =-\frac{3}{2}-3 \|_{\text {or }}-\frac{3}{2}-\frac{6}{2} \\
& =-1.5-3\left|\begin{array}{l}
=-\frac{9}{2}, ~ \\
=-4.5
\end{array}\right| \\
& \text { 234. } h(t)=-250 t+1200 \\
& \text { Find } h(20) \text {. } \\
& h(20)=-250(20)+1200 \\
& =-3800
\end{aligned}
$$

Find the domain value for each of the following.
$235 . C(n)=25 n+12$
Find n if $C(n)=24$.
$24=25 n+12$
$12=25 n$

236. $f(x)=\frac{1}{2} x-3$

Find x if $f(x)=12$.
237. $h(t)=-250 t+1200$

Find \dagger if $h(t)=1000$.

$$
\begin{aligned}
& 12=\frac{1}{2} x-3 \\
& 15=\frac{1}{2} x \\
& 30=x
\end{aligned}
$$

$$
\begin{aligned}
& 1000=-250 t+1200 \\
& -200=-250 t
\end{aligned}
$$

$$
\frac{-200}{-250}=t
$$

$$
\frac{4}{5}=t
$$

238. Below is a graph of $C(n)$.

Find $C(4)$.

$$
c(4)=40
$$

239. Below is a graph of $f(x)$.

Find x if $f(x)=7$.

$$
x=2
$$

Extended Practice

240. The centre of a circle is located at $(-3,0)$. Draw a tangent at $(5,-3)$. What is the equation of the tangent?

$$
m_{\text {tangent }}=\frac{-1}{6}
$$

$$
\frac{-1}{6}=\frac{y-5}{x-2}
$$

$$
-x+2=6 y-36
$$

$$
x+6 y-32=0
$$

242. Are the lines below parallel?

$$
m_{1}=-\frac{3}{2}
$$

243. Draw a line through $A(1,2)$ and $B(-3,-7)$. Now draw a perpendicular line through $C(9,-3)$.

$$
m_{2}=-\frac{3}{2}
$$

$$
m_{h}=\frac{-4}{9}
$$

Explain how you know slopes are $\frac{\text { equal. }}{\text { (}}$
What is the equation of the perpendicular line?

$$
\begin{aligned}
& \frac{-4}{9}=\frac{y+3}{x-9} \\
& -4 x+36=9 y+27 \\
& 4 x+9 y-9=0
\end{aligned}
$$

