Systems of Linear Equations

LESSON \#	DATE	QUESTIONS FROM NOTES	Questions that I find difficult
		Pg.	
		REVIEW	
		TEST	

Your teacher has important instructions for you to write down below.

Systems of Linear Equations

STRAND Functions		DAILY TOPIC	EXAMPLE
C9. Solve problems that involve systems of linear equations in two variables, graphically and algebraically	9.1	Model a situation, using a system of linear equations.	
	9.2	Relate a system of linear equations to the context of a problem.	
	9.3	Determine and verify the solution of a system of linear equations graphically, with and without technology.	
	9.4	Explain the meaning of a point of intersection of a system of linear equations.	
	9.5	Determine and verify the solution of a system of linear equations algebraically.	
	9.6	Explain, using examples, why a system of equations may have no solution, one solution or an infinite number of solutions.	
	9.7	Explain a strategy to solve a system of linear equations.	
	9.8	Solve a problem that involves a system of linear equations.	

[C] Communication [PS] Problem Solving, [CN] Connections [R] Reasoning, [ME] Mental Mathematics [T] Technology, and Estimation, [V] Visualization

Key Terms

Term	Definition	Example
linear equation		
system of linear equations		
solution to a system		
point of intersection		
infinite solutions		
one solution		
no solutions		
consistent		
inconsistent		
parallel		
perpendicular		

Introduction: Systems of Linear Equations

Challenge

Jazhon is considering two job offers. Concrete Emporium will pay Jazhon a base monthly salary of $\$ 500$ plus a commission rate of 5% on all sales each month. All Things Cement offers him a job that pays straight salary, $\$ 2500$ per month.

Jazhon wants to consider the two jobs mathematically before he makes his decision. He writes the following equations to represent each job offer.

Concrete Emporium: $E=0.05 s+500$
All Things Cement: $E=2500$

1. What does Jazhon need to consider before he can make an educated decision?
Estimate or research possible sales.
2. Graph the two equations on the grid below.

3. What is the significance of the point where the two lines cross?
Equal earnings
4. When does the job offered by Concrete Emporium pay more?

$$
\text { sales over } \$ 40000
$$

Challenge

Concrete Emporium: $E=0.05 s+500$
All Things Cement: $E=2500$

Where the lines cross \rightarrow earnings are equal.
Concrete Emporium will pay more if Jazhon sells more than \$40 000 worth of concrete.

We call the scenario to the left a System of Linear Equations.

The point $(40000,2500)$ is on both lines.

We say $(40000,2500)$ is the solution to the system.

That is...it is the point that satisfies both equations.
5. Challenge

Verify that $(2,4)$ is a solution to the following system. $x+y=6$

$$
\begin{aligned}
& {\left[\begin{array}{rl}
2 x-y=0
\end{array}\right.} \\
& \begin{aligned}
2+4 & =6 \\
6 & =6
\end{aligned} \\
& \begin{aligned}
2(2)-4 & =0 \\
4-4 & =0 \\
0 & =0
\end{aligned} \\
& Y E S
\end{aligned}
$$

Determine if the given point is a solution to the system of equations. Show your work.

12. Explain how you can determine if a given point is the solution to a system of linear equations.
It must satisfy both equations.

Challenge

13. Find the solution to the following system of equations.

$$
\begin{gathered}
y=2 x+1 \\
y=-3 x+1
\end{gathered}
$$

Find the solution to the following system of equations.

$$
y=2 x+1
$$

$$
y=-3 x+1
$$

Solve the following systems by graphing:

Solve the following systems by graphing:

29. Challenge

On the three graphs below, draw a system of linear equations with ...

a) One solution

b) No solutions

c) Infinite Solutions
30. Challenge

How many solutions are there to the system
$y=3 x+3$
$y=x+1$

Types of Solution Sets:

One solution

- Lines intersect once.
- Different Slopes.

We say the system is
CONSISTENT

Explain your reasoning.
different slopes \therefore lines
will intersect at one point.

One solution	No Solutions	Infinite Solutions
\bullet Lines intersect once.	• Parallel Lines	• Same Lines
• Different Slopes.	• Same Slopes	• Same Slopes
	• Different y-intercepts	• Same y-intercepts
We say the system is	We say the system is	
CONSISTENT	INCONSISTENT	(no solution)

Determine if the following systems have one solution, no solutions, or infinite solutions.

43. Solve:
45. Solve:

$$
\begin{array}{cl}
2 x+3 y-6=0 & y=-\frac{2}{3} x+2 \\
3 x-y+2=0 & y=3 x+2=1 \\
5 x+2 y=5
\end{array}
$$

a) $y=x-1$

b) $y=-\frac{5}{2} x+\frac{5}{2}$
46. Add the two equations above and graph the new equation. $6 x+y=6$
(c) $y=-6 x+6$
47. What do you notice?

It also passes through $(1,0)$.
48. Graph the system of equations:
$y=x+2$
49. What is the problem when solving this
$3 y=2 x-5 \quad y=\frac{2}{3} x-\frac{5}{3}$
system by graphing?
Tough to accurately plot (quickly) and solution is off the provided graph.
50. Challenge

Solve the system of linear equations: $y=x+2$ and $3 y=2 x-5$.

$$
\begin{aligned}
& y=x+2\} \text { if } y \text { is equal to }(x+2) \text {, I } \\
& \text { can substitute it into } \\
& 3 y=2 x-5 \text { the other equation. } \\
& 3(x+2)=2 x-5 \\
& \begin{array}{c}
3 x+6=2 x-5 \\
-2 x-6=-11 \\
x-6
\end{array} \\
& \text { if } \begin{aligned}
x & =-11, \quad I \quad \text { car find } y . \\
y & =x+2 \\
y & =-11+2
\end{aligned}
\end{aligned}
$$

Page $\mathbf{1 1}$ |Linear Systems

Solving Systems of Equations (without graphing)

Part 1: Solving By substitution.

Graph the system of equations:
$y=x+2$
$3 y=2 x-5$

My thoughts...
If I graph each of these lines, I notice that they do not cross at a point that I can easily read on this graph.

Also, the second equation is not easily graphed.

I can use a different method.

Algebra! See My Solution Below.
51. What is the solution to a system of linear equations?

The point that satisfies both equations.
52. If a point is present on two lines, what values of that point are equal:
a. x -values
b. y -values
c. both x - and y -values

Solve the system of equations:
"1" $y=x+2 \quad$ I will substitute $(x+2)$ in to equation " 2 " for y.
" 2 " $3 y=2 x-5 \quad 3(x+2)=2 x-5$
$3 x+6=2 x-5$
$x=-11$

Then substitute $x=-11$ into equation " 1 ".
$y=(-11)+2$
$y=-9$
Therefore the solution is $(-11,-9)$
53. Solve the following system of equation without graphing, consider the answers to the previous questions to guide you.

$$
\begin{aligned}
& \begin{array}{l}
y=(2 x-1) \\
y=-x+1 \\
x=1
\end{array} \\
& \begin{array}{l}
2 x-1=-1 x+1 \\
2 x+1
\end{array} \\
& \frac{3}{3} x=\frac{2}{3} \\
& x=\frac{2}{3} \\
& \begin{aligned}
\therefore \quad y & =-\left(\frac{2}{3}\right)+1 \\
& =-\frac{2}{3}+\frac{3}{3}
\end{aligned} \quad\left(\begin{array}{l}
\left.\frac{2}{3}\right) \frac{1}{3}
\end{array}\right) \\
& =\frac{1}{3}
\end{aligned}
$$

54. Verify your solution above.

$$
\begin{aligned}
& \begin{aligned}
2\left(\frac{2}{3}\right)-1 & =\frac{1}{3} \\
& =\frac{1}{3}
\end{aligned} \\
& \frac{4}{3}-1=\frac{1}{3} \\
& \frac{4}{3}-\frac{3}{3}=\frac{1}{3} \\
& \frac{1}{3}=\frac{1}{3} \\
& \frac{1}{3}=-\frac{2}{3}+1 \\
& \frac{1}{3}=\frac{1}{3} \\
& \begin{array}{l}
\text { YES, it satisfies } \\
\text { both equations }
\end{array} \\
& \text { both equations. }
\end{aligned}
$$

Solve the following systems of equations by substitution.
55. Solve.

$$
\begin{aligned}
& y=2 x-1 \\
& y=-x+1
\end{aligned}
$$

Since both $(2 x-1)$ and $(-x+1)$ are equal to ' y ', then they must be equal to each other.
$2 x-1=-x+1$
$3 x=2$
$x=\frac{2}{3}$
To find ' y ', substitute your known ' x ' into either equation.

$$
\begin{gathered}
y=-\left(\frac{2}{3}\right)+1 \\
y=\frac{1}{3}
\end{gathered}
$$

Solution $\left(\frac{2}{3}, \frac{1}{3}\right)$
58. Solve.

$$
\begin{gathered}
\begin{array}{l}
3 x+y=1 \quad y=-3 x+1 \\
2 x+3 y=11 \\
2 x+3(-3 x+1)=11 \\
2 x-9 x+3=11 \\
-7 x=8 \\
x=-\frac{8}{7}
\end{array}
\end{gathered}
$$

60. Solve.

$$
\begin{aligned}
3 x-4 y & =-15 \\
5 x+y=-2 y & =-5 x-2 \\
3 x-4(-5 x-2) & =-15 \\
3 x+20 x+8 & =-15 \\
23 x & =-23 \\
x & =-1 \\
\therefore y & =-5(-1)-2 \\
& 5-2 \\
& =3
\end{aligned}
$$

56. How can I check the solution to the right?
substitute $\left.\begin{array}{c}\frac{2}{3}, \frac{1}{3} \\ x, y\end{array}\right)$ into both equations to see if the point satisfies the equations
57. Check the solution to the right.
see previous page

Solve the following systems of equations by substitution.

68. Write a system of 2 linear equations for the following problem.
The sum of two numbers is 65 . The first number is 17 greater than the second.
let $x=$ first number
$y=$ second number

$$
\begin{aligned}
& x+y=65 \\
& x=y+17
\end{aligned}
$$

69. Find the numbers in the problem to the left.

$$
\begin{gathered}
x+y=65 \\
x=y+17 \\
(y+17)+y=65 \\
2 y+17=65 \\
2 y=48 \\
y=24
\end{gathered}
$$

70. Write a system of 2 linear equations for the following problem.
One number is 12 less than another number. Their sum is 102 .

$$
\begin{aligned}
& x=y-12 \\
& x+y=102
\end{aligned}
$$

71. Find the numbers in the problem to the left.

$$
\begin{gathered}
x+y=102 \\
x=y-12 \\
(y-12)+y=102 \\
2 y-12=102 \quad \therefore x=57 \cdots 12 \\
2 y=114 \\
y=57 \\
y=45 \\
\text { (45.57) }
\end{gathered}
$$

72. Write a system of 2 linear equations for the following problem.

Mr. J bought a total of 12 pairs of socks. Athletic socks cost $\$ 5$ per pair and dress socks cost $\$ 7$ per pair. He spent $\$ 70$ in total.

$$
\begin{aligned}
& a+d=12 \\
& 5 a+7 d=70
\end{aligned}
$$

buy?

$$
\left.\begin{array}{rl}
a & =12-d \\
5(12-d)+7 d & =70 \\
60-5 d+7 d & =70 \\
2 d & =10 \\
d & =5
\end{array}\right] \begin{aligned}
& \therefore a=12-5 \begin{array}{l}
\text { He bought } \\
5 \text { pair dress } \\
7 \text { p air d the }
\end{array} \\
& =7
\end{aligned}
$$

Part 2: Solving By Elimination (Addition or Subtraction)
Challenge Questions
74. Is $(3,1)$ a solution to the system $2 x-y=5$ and $2 x-4 y=2$?

$$
\begin{array}{r}
2(3)-1=5 \\
6-1=5
\end{array}
$$

$$
\begin{gathered}
2(3)-4(1)=2 \\
6-4= \\
2(2 x-4 y=2) \rightarrow \\
4 x-8 y=4
\end{gathered}
$$

76. Is $(3,1)$ still a solution to each of the equations above?

$$
\begin{gathered}
4(3)-2(1)=10 \\
12-2=10
\end{gathered}
$$

$$
4(3)-8(1)=4
$$

$$
12-8=4
$$

77. Add the two original equations together:

$$
\begin{aligned}
& 2 x-y=5 \\
& 2 x-4 y=2 \\
& 4 x-5 y=7
\end{aligned}
$$

78. Is $(3,1)$ a solution to the new equation? $4(3)-5(1)=7$

$$
\begin{align*}
12-5 & =7 \\
7 & =7
\end{align*}
$$

79. What conclusions can you draw about adding/subtracting equations together?

Does not affect the solution. That is, the solution will satisfy the newly created equation.
80. What conclusions can you draw about multiplying equations in a system by a constant?

Same as question above.
81. Can you multiply the equations by different numbers without affecting the solution?

Yes, as long as you are consistent within each equation.
$\begin{aligned} \text { Eg. } \\ \left.\begin{array}{rl}(x+2 y & =6) \\ 3 x+6 y & =18\end{array}\right\} \text { yes }\end{aligned}$

$$
\left.\begin{array}{l}
3 \\
(x)^{2}+(2 y)^{\prime}=(6) \\
3 x+6 y=6 x
\end{array}\right\} N 0
$$

82. Graph equation (1):
(1) $2 x+y=8$

$$
y=-2 x+8
$$

83. Graph equation (2):
(2) $y=4 x-4$
84. Add equations (1) and (2).

Call this equation (3).

$$
\begin{aligned}
y & =-2 x+8 \\
+y & =4 x-4 \\
\hline 2 y & =2 x+4
\end{aligned}
$$

(3)
$2 y=2 x+4$ $85 \quad y=x+2$
85. Graph equation (3).
86. Multiply (3) $\times 3$ and call this
(4) $3 y=3 x+6$
$0 \leq y=x+2$
87. Graph equation (4).
88. Add (3) and (4), call this equation (5).
(5)
$2 y=2 x+4$
(3) $y=x+2$
89. GYaph equation
(4) $\frac{y=x+2}{2 y=2 x+4}$
could have used
the original
(3) and (4) instead
$\Rightarrow 5 y=5 x+10$
90. Describe what you see happening above.

All lines cross at $(2,4)$, the common solution.
91. Write a set of rules describing what you may do to a system of equations in order to find the solution. That is, how can you manipulate the equations without affecting the solution?
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \begin{array}{l}
3 x-6 y=21 \\
-3 x-4 y=-1 \\
-10 y=20 \\
y=-2
\end{array} \rightarrow \quad \begin{array}{l}
3 x-6(-2)=21 \\
3 x+12=21 \\
3 x=9 \\
\\
\\
\end{array}
\end{aligned}
$$

93. Solve.

$$
\begin{aligned}
& \begin{array}{l}
2 x+3 y=18 \\
2 x-3 y=-6
\end{array} \quad \therefore 2(3)+3 y=18 \\
& \frac{2 x-3 y=-6}{4 x+0=12} \\
& x=3 \\
& \begin{aligned}
6+3 y & =18 \\
3 y & =12 \\
y & =4
\end{aligned}
\end{aligned}
$$

Solution: $(3,-2)$

96. Solve.
95. Solve.
$8 x+2 y=-20$
$(-4 t+3 s=2) \times 2 \rightarrow-8 t+6 s=4$
$8 t-6 s=-4 \rightarrow \frac{8 t-6 s}{}=-4$

\therefore Infinite Solutions

$$
\begin{aligned}
6 x-3 y=24 \\
3(x+y=-2) \quad \begin{aligned}
6 x-3 y & =24 \\
3 x+3 y & =-6 \\
9 x & =18 \\
x & =2 \\
\therefore 2+y & =-2 \\
y & =-4 \quad(2,-4)
\end{aligned} \quad \begin{aligned}
2
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
(3 b-a=1) & (2 b-4 a
\end{aligned}=49 子 \begin{aligned}
-12 b+4 a=-4 & \frac{-12 b+4 a}{}=-4 \\
0 & =0
\end{aligned}
$$

same Line:infinte solutions

$$
\begin{aligned}
& \text { 98. Solve. } \\
& \begin{aligned}
100(0.05 x+0.07 y=19) 5 x+7 y & =1900 \\
-5(x+y=300) \quad-5 x-5 y & =-1500 \\
2 y & =400 \\
y & =200
\end{aligned} \\
& \therefore x+200=300 \\
& x=100 \quad(100,200) \\
& \text { 100. Two numbers have a sum of } 25 \text { and a } \\
& \text { difference if } 7 \text {. What are the two numbers? } \\
& x+y=25 \\
& x-y=7 \\
& 2 x=32 \\
& x=16 \\
& \therefore 16+y=25 \\
& y=9 \\
& \text { The numbers are } 16 \text { and } 9 \text {. } \\
& \text { 102. When three times one number is added to } \\
& \text { two times another number, the sum is } 21 \text {. } \\
& \text { When } 4 \text { times the second number is } \\
& \text { subtracted from } 10 \text { times the first number, } \\
& \text { the difference is } 38 \text {. What are the numbers? } \\
& \text { let } x=\text { first number } y=\text { second } \\
& \begin{aligned}
2(3 x+2 y & =21) \\
10 x-4 y & =38
\end{aligned} \\
& 6 x+4 y=42 \\
& x=5 \\
& \therefore 3(5)+2 y=21 \\
& 15+2 y=21 \\
& \begin{aligned}
2 y & =6 \\
y & =3
\end{aligned} \\
& \text { 99. Solve. } \\
& \text { Hcoim: } x+y=29 \\
& \text { chine: }-(2 x+1 y=41) \\
& \begin{aligned}
& \text { coins } \\
&-x=-12
\end{aligned} \\
& x=12 \\
& \text { 101. Anna has a pocket full of loonies (} \$ 1 \text { coins) } \\
& \text { and monies (} \$ 2 \text { coins). She has } \$ 41 \text { in total. } \\
& \text { If she has } 29 \text { coins, how many of each does } \\
& \text { she have? } \quad x=\# \text { tories } / y=\# / \text { loonies } \\
& 17 \text { monies } \\
& \begin{aligned}
\therefore 12+y & =29 \\
y & =17
\end{aligned} \\
& 12 \text { lories. } \\
& \text { 103. The totaCost (before taxes) for three coffees } \\
& \text { and two cookies is } \$ 10.05 \text {. The cost for five } \\
& \text { coffees and three cookies is } \$ 16.10 \text {. Find the } \\
& \text { individual cost for each item. } \\
& 4 \text { cookies }=y \\
& 3(3 x+2 y=10.05) \\
& -2(5 x+3 y=16.10) \quad \text { (offer } \\
& \begin{array}{rlr}
9 x+6 y & =30.15 \quad \$ 2.05 \\
-10 x-6 y & =32.20 \\
\hline-x & =-2.05 & \text { Cookie } \\
\therefore x=2.05 & \$ 1.95
\end{array} \\
& \begin{array}{c}
3(2.05)+2 y=10.05 \\
2 y=10.05-6.15 \\
2 y=3.90 \\
y=1.95
\end{array} \\
& \text { Page } \mathbf{2 0} \text { |Linear Systems } \\
& \text { Copyright Mathbeacon.com. Use with permission. Do not use after June } 2011
\end{aligned}
$$

Solving Problems with Systems of Equations. Use the method of your choice.

104. A job offered to Mr. Xu will pay straight commission at a rate of 6% on all sales. A second job offer will pay a monthly salary of $\$ 400$ and 2% commission. How much would Mr. Xu have to sell so that both jobs would pay him the same amount. $\begin{aligned} & E=0.06 s \\ & E=0.02 s+400 \\ & \text { substitution: } \\ & 0.06 s=0.02 \mathrm{~s}+400 \\ & 0.04 \mathrm{~s}=400 \\ & s=10000 \end{aligned}$ (equal) When sales are $\$ 10,000$ both jobs pay the same When would the job paying straight commission be a better choice? When monthly sales were over $10,000$	105. In his 2004-05 season, Steve Nash scored 524 total baskets (not including free throws). He scored 336 more two point baskets than three point baskets. Write and solve a system of linear equations that represents this problem. $x=3 p^{t}$ shots $y=2$ pt shots substitntia: $\begin{gathered} x+y=524 \\ x-336=y \end{gathered}\left\{\begin{array}{c} x+(x-336)=524 \\ 2 x-336=524 \\ 2 x=860 \\ x=430 \end{array}\right] \begin{aligned} & \text { et your solution: } \quad \begin{array}{r} y=430-336 \\ \end{array} \end{aligned}$ Interpret your solution: Steve scored 430 2-pt
106. Mr. J has a class with 30 students in it. 22 of those students own a cell phone. $\frac{4}{5}$ of the girls owned a cell phone and $\frac{3}{5}$ of the boys owned a cell phone. How many girls were in this class? $\quad x={ }^{+}$bays $y={ }^{ \pm}$girls $\begin{aligned} x+y & =30 \rightarrow x=30-y \\ 5\left(\frac{3}{5} x+\frac{4}{5} y\right. & =22) \rightarrow 3 x+4 y=110 \end{aligned}$	107. Daiki invested a total of $\$ 12000$ in two stocks in 2009. One stock earned 4% interest and the other earned 7\% interest. Daiki earned a total of $\$ 615$ in interest in 2009. How much did he invest in each stock? Let $x=$ amount in 4% stock $y=117 \%$ $\begin{gathered} x+y=12000 \rightarrow y=12000-x \\ 100(0.04 x+0.07 y=615) \rightarrow 4 x+7 y=61500 \end{gathered}$
Substitute: $\begin{aligned} 3(30-y)+4 y & =110 \\ 90-3 y+4 y & =110 \\ y & =20 \end{aligned}$ 20 girls in the class	Substitute: $\begin{gathered} 4 x+7(12000-x)=61500 \\ 4 x+84000-7 x=61500 \\ -3 x=-22500 \\ x=7500 \\ \therefore 7500+y=12000 \\ y=4500 \end{gathered}$ \therefore 直 7500 @ 4% and 4500 @ 7%

For each of the following problems, write and solve a system of equations. Interpret solutions!

$$
d=s t
$$

112. Jay Maholl swam 12 km downstream in Englishman River in two hours. The return trip upstream took 6 hours. Find the speed of the current in Englishman River. $x=$ speed of Jay in still water $y=$ speed current
$12=2(x+y) \rightarrow 6=x+y$
$12=6(x-y)$

$$
\begin{aligned}
& \text { current; Jay's speed are } \\
& \text { constant }
\end{aligned}
$$

114. The Lucky-Lady dinghy travels 25 km upstream in five hours. The return trip takes only half an hour. Find the speed of the boat and the speed of the current.

$$
d=s t \quad y
$$

$$
5(x-y)=25 \quad \rightarrow \quad x-y=5
$$

$$
\frac{1}{2}(x+y)=25 \rightarrow x+y=50
$$

$$
\text { Elimination } 2 x=55
$$

$$
x=27.5
$$

$$
\begin{aligned}
\therefore \quad 27.5+y & =50 \\
y & =22.5
\end{aligned}
$$

boat speed is $27.5 \mathrm{~km} / \mathrm{h}$ current speed is $22.5 \mathrm{~km} / \mathrm{h}$
115. A bumble bee travels 4.5 km into a headwind in 45 minutes. The return trip with the wind only takes 15 minutes. Assuming speeds are constant, find the speed of the bumble bee in still air.

$\frac{3}{4}(x+y)=4.5$
$0.75(x+y)=4.5$
$0.25(x-y)=4$.
116. A plane flew a distance of 650 km in 3.25
hours when travelling in a tailwind. The return trip took 6.5 hours against the same wind. Assume both speeds are constant.

Find the speed of the plane and the wind speed.

$$
x+y=6
$$

$\begin{array}{rl}3.25(x+y)=650 & x+y \\ =200 \\ 6.5(x-y)=650 & x-y\end{array} \begin{aligned} & =100 \\ 2 x & =300 \\ x & =150\end{aligned}$

$$
\begin{aligned}
& x-y=18 \\
& 2 x=24
\end{aligned}
$$

$$
x=12
$$

Page 23 |Linear Systems
$\therefore 150+y_{y}=500$
plane speed $=150 \mathrm{~kJ} / \mathrm{L}$ wind speed $=50 \mathrm{~km} / \mathrm{l}$
Copyright Mathbeaçn.com. Use with permission. Do not use after June 2011
117. A 50% acid solution is required for a chemistry lab. The instructor has a 20% stock solution and a 70% stock solution. She needs to make 20 litres of the 50% acid solution. How much of each stock solution should she use?

Let $\mathrm{x}=$ volume of 20% solution
Let $\mathrm{y}=$ volume of 70% solution.
$x+y=20$
$0.2 x+0.7 y=(0.5)(20)$
$0.2 x+0.7 y=10$
Solve the System: IUsed Elimination ${ }^{-2}(x+y=20) \longrightarrow-2 x-2 y=-40$
${ }^{10}(0.2 x+0.7 y=10) \rightarrow 2 x+7 y=100$

$8 l$ of 20% a aid
$12 l$
:---:
$y=12$

119. The karat (or carat) is a measure of the purity of gold in gold alloy. 18 K gold is approximately 75% pure and 14 K gold is approximately 58.5% pure. Using 18 K and 14 K stock, a goldsmith needs to produce 40 g of gold alloy that is 70% pure. How much of each stock will he need to use? (round to
sabititut $0.75 x+0.585 y=0.70(40)$
$0.75(40-y)+0.585 y=28$
$30-0.75 y+0.585 y=28$
$-0.165 y=-2$
$\therefore x+12.12=40 \quad y=12.12 g$
$x=27.88$
g
Page $\mathbf{2 4}$ |Linear Systems
$\therefore x+18=20$

$$
\begin{aligned}
& 18 \mathrm{l} \text { of } 70 \% \text { a cid } \\
& 2 \mathrm{l} \text { of } 20 \% \text { a cid }
\end{aligned}
$$

118. A 65% acid solution is required for a
chemistry lab. The instructor has a 20% stock solution and a 70% stock solution. She needs to make 20 litres of the 65% acid solution. How much of each stock solution should she use?

$$
\begin{aligned}
x+y & =20 \rightarrow x=20-y \\
0.2 x+0.7 y & =(0.65)(20)
\end{aligned}
$$

substitution:

$$
\begin{aligned}
0.2(20-y)+0.7 y & =13 \\
4-0.2 y+0.7 y & =13 \\
0.5 y & =9 \\
y & =18
\end{aligned}
$$

$$
x=?
$$

120. A goldsmithmeeds to make 50 g of 14 K gold (58.5%) from 18 K (75%) and 10 K (41.7%) stock alloys. How much of each does she need? (round to nearest hundredth)

$$
\text { Let } x=\text { grams } 18 \mathrm{~K}
$$

$$
\frac{\hat{y}=\text { grams 10K }}{x+y=50 \rightarrow x=50^{-y}}
$$

$$
0.75 x+0.417 y=0.585(50)
$$

$$
0.75(50-y)+0.417 y=29.25
$$

$$
37.5-0.75 y+0.417 y=29.25
$$

$$
-0.333 y=-8.25
$$

$$
y=24.77
$$

$$
\begin{array}{c|c}
\therefore x+24.77=50 & \text { Use } 25.23 \mathrm{~g} 18 \mathrm{k} \\
x=25.23 & \text { and } 24.77 \mathrm{~g} 10 \mathrm{k}
\end{array}
$$

[^0]
[^0]: Copyright Mathbeacon.com. Use with permission. Do not use after June 2011

